
In the Proceedings of the 35th International Symposium on Microarchitecture, Instabul, Turkey, November 2002

Vector Vs. Superscalar and VLIW Architectures
for Embedded Multimedia Benchmarks

Christoforos Kozyrakis
Electrical Engineering Department

Stanford University
christos@ee.stanford.edu

David Patterson
Computer Science Division

University of California at Berkeley
pattrsn@cs.berkeley.edu

Abstract

Multimedia processing on embedded devices requires an
architecture that leads to high performance, low power con-
sumption, reduced design complexity, and small code size.
In this paper, we use EEMBC, an industrial benchmark
suite, to compare the VIRAM vector architecture to super-
scalar and VLIW processors for embedded multimedia ap-
plications. The comparison covers the VIRAM instruction
set, vectorizing compiler, and the prototype chip that inte-
grates a vector processor with DRAM main memory.

We demonstrate that executable code for VIRAM is up to
10 times smaller than VLIW code and comparable to x86
CISC code. The simple, cache-less VIRAM chip is 2 times
faster than a 4-way superscalar RISC processor that uses a
5 times faster clock frequency and consumes 10 times more
power. VIRAM is also 10 times faster than cache-based
VLIW processors. Even after manual optimization of the
VLIW code and insertion of SIMD and DSP instructions,
the single-issue VIRAM processor is 60% faster than 5-way
to 8-way VLIW designs.

1 Introduction

The exponentially increasing performance and general-
ity of superscalar processors has lead many to believe that
vector architectures are doomed to extinction. Even in the
supercomputing domain, the traditional application of vec-
tor processors, it is widely considered that interconnecting
superscalar processors into large-scale MPP systems is the
most promising approach [4]. Nevertheless, vector archi-
tectures provide us with frequent reminders of their capabil-
ities. The recently announced Japanese Earth Simulator, a
supercomputer based on NEC SX-6 vector processors, pro-
vides 5 times the performance with half the number of nodes

of ASCI White, the most powerful supercomputer based on
superscalar technology. Vector processors remain the most
effective way to exploit data-parallel applications [20].

This paper studies the efficiency of vector architectures
for the emerging computing domain of multimedia pro-
grams running on embedded systems. Multimedia pro-
grams such as video, speech recognition, and 3D graphics,
constitute the fastest growing class of applications [5]. They
require real-time performance guarantees for data-parallel
tasks that operate on narrow numbers with limited tem-
poral locality [6]. Embedded systems include entertain-
ment devices, such as set-top-boxes and game consoles,
and portable electronics, such as PDAs and cellular phones.
They call for low power consumption, small code size, and
reduced design and programming complexity in order to
meet the cost and time-to-market requirements of consumer
electronics. The complexity, power consumption, and lack
of explicit support for data-level parallelism suggest that su-
perscalar processors are not necessarily a suitable approach
for embedded multimedia processing.

To prove that vector architectures meet the requirements
of embedded media-processing, we evaluate the VIRAM
vector architecture with the EEMBC benchmarks, an indus-
trial suite for embedded systems. Our evaluation covers all
three components of VIRAM: the instruction set, the vec-
torizing compiler, and the processor microarchitecture. We
show that the compiler can extract a high degree of data-
level parallelism from media tasks described in C and can
express it with vector instructions. The VIRAM code is sig-
nificantly smaller than code for RISC and VLIW architec-
tures and is comparable to that for x86 CISC processors.
We describe a simple, low power, prototype chip that in-
tegrates the VIRAM architecture with embedded DRAM.
The cache-less vector processor is 2 times faster than a 4-
way superscalar processors running at a 5 times higher clock
frequency. Despite issuing a single instruction per cycle, it

is also 10 times faster than 5-way to 8-way VLIW designs.
We demonstrate that the vector processor provides perfor-
mance advantages for both highly vectorizable benchmarks
and partially vectorizable tasks with short vectors.

The rest of this paper is structured as follows. Section
2 summarizes the basic features of the VIRAM architec-
ture. Section 3 describes the EEMBC embedded bench-
marks. Section 4 evaluates the vectorizing compiler and the
use of the vector instruction set. It also presents a code size
comparison between RISC, CISC, VLIW, and vector archi-
tectures. Section 5 proceeds with a microarchitecture eval-
uation in terms of performance, power consumption, design
complexity, and scalability. Section 6 presents related work
and Section 7 concludes the paper.

2 Vector Architecture for Multimedia

In this section, we provide an overview of the three com-
ponents of the VIRAM architecture: the instructions set, the
prototype processor chip, and the vectorizing compiler.

2.1 Instruction Set Overview

VIRAM is a complete, load-store, vector instruction set
defined as a coprocessor extension to the MIPS architecture.
The vector architecture state includes a vector register file
with 32 entries that can store integer or floating-point ele-
ments, a 16-entry flag register file that contains vectors with
single-bit elements, and a few scalar registers for control
values and memory addresses. The instruction set contains
integer and floating-point arithmetic instructions that oper-
ate on vectors stored in the register file, as well as logical
functions and operations such as population count that use
the flag registers. Vector load and store instructions support
the three common access patterns: unit stride, strided, and
indexed. Overall, VIRAM introduces 90 unique instruc-
tions, which, due to variations, consume 660 opcodes in the
coprocessor 2 space of the MIPS architecture.

To enable the vectorization of multimedia applications,
VIRAM includes a number of media-specific enhance-
ments. The elements in the vector registers can be 64, 32,
or 16 bits wide. Multiple narrow elements are placed in
the storage location for one wide element. Similarly, each
64-bit datapath is partitioned in order to execute multiple
narrower element operations in parallel. Instead of spec-
ifying the element and operation width in the instruction
opcode, we use a control register which is typically set
once per group of nested loops. Integer instructions sup-
port saturated and fixed-point arithmetic. Specifically, VI-
RAM includes a flexible multiply-add model that supports
arbitrary fixed-point formats without using accumulators or
extended-precision registers. Three vector instructions im-
plement element permutations within vector registers. Their

Scalar Single-issue 64-bit MIPS pipeline
Core 8K/8K direct-mapped L1 I/D caches
Vector 8K vector register file (32 registers)
Coprocessor 2 pipelined arithmetic units

4 64-bit datapaths per arithmetic unit
1 load-store unit (4 address generators)
256-bit memory interface

Memory 13 MBytes in 8 DRAM banks
System 25ns random access latency

256-bit crossbar interconnect

Technology 0.18 � m CMOS process (IBM)
6 layers copper interconnect

Transistors 120M (7.5M logic, 112.5M DRAM)
Clock 200 MHz
Frequency
Power 2 Watts
Dissipation
Peak Int: 1.6/3.2/6.4 Gop/s (64b/32b/16b)
Performance FP: 1.6 Gflop/s (32b)

Table 1. The characteristics of the VIRAM vec-
tor processor chip.

scope is limited to the vectorization of dot-products (reduc-
tions) and FFTs, which makes them regular and simple to
implement. Finally, VIRAM supports conditional execution
of element operations for virtually all vector instructions us-
ing the flag registers as sources of element masks [21].

The VIRAM architecture includes several features that
help with the development of general-purpose systems,
which are not typical in traditional vector supercomputers.
It provides full support for paged virtual addressing using a
separate TLB for vector memory accesses. It also provides
a mechanism that allows the operating system to defer the
saving and restoring of vector state during context switches,
until it is known that the new process uses vector instruc-
tions. In addition, the architecture defines valid and dirty
bits for all vector registers that are used to minimize the
amount of vector state involved in a context switch.

Detailed descriptions of the features and instructions in
the VIRAM architecture are available in [13].

2.2 Microarchitecture Overview

The VIRAM prototype processor is a simple implemen-
tation of the VIRAM architecture. It includes an on-chip
main memory system1 based on embedded DRAM technol-
ogy that provides the high bandwidth necessary for a vector
processor at moderate latency. Table 1 summarizes the basic
features of the chip.

1The processor can address additional, off-chip, main memory. Data
transfers between on-chip and off-chip are under software control.

ALU0

FLAGS

LSU

ALU1

Vector Reg.
Elements

LANE 0

ALU0

FLAGS

ALU0

FLAGS

LSU

ALU0

FLAGS

LSU$I $D

ALU1

Vector Reg.
Elements

ALU1

Vector Reg.
Elements

ALU1

Vector Reg.
Elements

LANE 1 LANE 2 LANE 3

Control
Vector

LSU

MIPS
Core

64b

I/O
256b

DRAM
BANK

0

256b

DRAM
BANK

256b

DRAM
BANK

1 7
. . .

Memory Crossbar

Figure 1. The microarchitecture of the VIRAM
vector processor chip.

Figure 1 presents the chip microarchitecture, focusing on
the vector hardware and the memory system. The register
and datapath resources in the vector coprocessor are parti-
tioned vertically into four identical vector lanes. Each lane
contains a number of elements from each vector and flag
register and a 64-bit datapath from each functional unit. The
four lanes receive identical control signals on each clock
cycle. The use of parallel lanes is a fundamental concept
in the microarchitecture that leads to advantages in perfor-
mance, design complexity, and scalability. Assuming suffi-
ciently long vectors, VIRAM achieves high performance by
executing on the parallel lanes multiple element operations
for each pending vector instruction. Since the four lanes
are identical, design and verification time is reduced sig-
nificantly. Lanes also eliminate most long communication
wires that complicate scaling in CMOS technology [12].
The execution of an element operation for all vector instruc-
tions, excluding memory references and permutations, in-
volves register and datapath resources within a single lane.
Finally, the modular implementation provides a simple way
for scaling up or down the performance, power consump-
tion, and area (cost) of the vector processor by allocating
the proper number of vector lanes.

The VIRAM pipeline is single-issue and in-order. Vec-
tor load and store instructions access DRAM main mem-
ory directly without using any SRAM caches. In order to
hide the latency of random accesses to DRAM, both load-
store and arithmetic vector instructions are deeply pipelined
(15 stages). The processor operates at just 200 MHz. VI-
RAM achieves high performance by executing multiple el-
ement operations per cycle on the parallel vector lanes. The
intentionally low clock frequency, along with the in-order,
cache-less organization allow for low power consumption.

They also contribute to reduced design complexity. The
120-million transistor chip was designed by 3 full-time and
3 part-time graduate students over a period of 3 years.

The microarchitecture and design of the VIRAM chip is
described in details in [14].

2.3 Vectorizing Compiler

The VIRAM compiler is based on the PDGCS compi-
lation system for Cray supercomputers such as C90-YMP,
T3E, and SV2. The front-end allows the compilation of pro-
grams written in C, C++, and Fortran90. The PDGCS opti-
mizer has extensive capabilities for automatic vectorization,
including outer-loop vectorization and handling of partially
vectorizable language constructs.

The two main challenges in adopting a supercomputing
compiler to a multimedia architecture were the support for
narrow data types and the vectorization of dot-products. We
modified the compiler to select the vector element and oper-
ation width for each group of nested loops using two passes.
During the first pass, it records the minimum data width that
satisfies the accuracy requirements of the arithmetic opera-
tions in the loop nest. In the second pass, it performs the
actual vectorization at the selected width. The compiler also
recognizes linear recurrences on common arithmetic, logi-
cal, and comparison operations for reductions, and uses the
permutation instructions in order to vectorize them.

The code generator in the VIRAM compiler produces
correct scalar code for MIPS and vector code for VIRAM.
Due to time constraints, it does not include some basic back-
end optimizations. It does not move the code for generating
constants outside of the loop body (code motion). Due to
some legacy code from early Cray machines, it occasion-
ally attempts to use only 8 of the 32 vector registers, which
leads to unnecessary spill code. Finally, it does not perform
basic block scheduling for the static pipeline of the proto-
type chip. In other words, it does not take into account the
functional unit mix and latencies in the VIRAM processor,
while scheduling the instructions within each basic block.
The missing back-end optimizations can have a significant
effect on code size and performance (see Sections 4 and 5
respectively). However, these optimizations are straight-
forward to add in the future and have been available for
years in all commercial compilers. None of the missing op-
timizations affects automatic vectorization, which is by far
the most crucial compiler task for a vector architecture.

Further details on the algorithms used in the VIRAM
compiler are available in [15].

3 Embedded Multimedia Benchmarks

To evaluate the efficiency of the VIRAM instruction
set, microarchitecture, and compiler, we used the EEMBC

Consumer Category
Rgb2cmyk Converts an RGB image the CMYK format
Rgb2yiq Converts an RGB image to the YIQ format
Filter High-pass gray-scale image filter
Cjpeg JPEG image compression
Djpeg JPEG image decompression

Telecommunications Category
Autocor Voice compression using autocorrelation
Convenc Convolutional encoder for modems
Bital Bit allocation to frequency bins for ADSL
Fft 256-point fixed-point fast Fourier transform
Viterbi Viterbi decoding for wireless applications

Table 2. The benchmarks in the consumer
and telecommunications categories of the
EEMBC suite.

benchmarks [16]. The EEMBC suite has become the de-
facto industrial standard for comparing embedded proces-
sors. It includes five benchmark categories that represent a
wide range of embedded tasks. In this work, we focused on
the consumer and telecommunications categories that rep-
resent the typical workload of consumer devices that com-
bine multimedia applications with high bandwidth, wired or
wireless connectivity. Table 2 presents the ten benchmarks
in the two categories. The benchmarks are written in C and
use integer and fixed-point arithmetic. In all cases, we used
the reference datasets provided by EEMBC.

The comparison metrics for EEMBC are performance
and static code size. Performance for individual bench-
marks is reported in iterations (repeats) per second. A com-
posite score that is proportional to the geometric mean of
the individual benchmark scores summarizes each category.
With both individual and composite scores, a higher score
indicates higher performance. To measure performance re-
liably, EEMBC recommends running each benchmark tens
of times. However, this provides an unfair advantage to
cache-based architectures, because it creates artificial tem-
poral locality. After a couple of iterations, even an 8-KByte
cache can effectively capture the small datasets for these
benchmarks, which allows a cache-based processor to op-
erate as if it had a single-cycle memory latency. The input
data for real multimedia applications are streaming, which
means that kernels are repeated numerous times, but always
with new inputs coming from main memory or other IO de-
vices.

EEMBC allows for two modes of measurement. The
out of the box mode uses the binaries produced with di-
rect compilation of the original benchmark code. The opti-
mized mode allows for extensive optimizations of the C or
assembly code, but prohibits any algorithmic changes. We
used the optimized mode to perform the basic back-end op-
timizations missing from the code generator in the VIRAM

0%

20%

40%

60%

80%

100%

Rgb
2c

myk

Rgb
2y

iq
Filte

r

Cjpe
g

Djpe
g

Auto
co

r

Con
ve

nc
Bita

l
Fft

Vite
rb

i

%
 o

f
D

yn
am

ic
 O

p
er

at
io

n
s

Vector Scalar

Figure 2. The distribution of vector and scalar
operations.

0

20

40

60

80

100

120

Rgb
2c

myk
Filte

r

Cjpe
g

Djpe
g

Con
ve

nc

Vite
rb

i

Rgb
2y

iq

Cjpe
g

Djpe
g

Auto
co

r
Bita

l
Fft

V
ec

to
r

L
en

g
th

 (
E

le
m

en
ts

)

Average Maximum Supported

Figure 3. The average vector length in ele-
ments.

compiler. However, we did not apply any other optimiza-
tions, such as loop unrolling or software pipelining. We
did not restructure the original benchmark code either, even
though it would be very beneficial for Cjpeg and Djpeg.

4 Instruction Set Evaluation

This section presents an evaluation of the ability of the
VIRAM instruction set and the compiler to express the data-
level parallelism in the EEMBC benchmarks. Unless oth-
erwise stated, the results represent dynamic measurements
using the code generated by the compiler.

4.1 Vectorization

Figure 2 presents the percentage of operations specified
by vector instructions, also known as the degree of vector-
ization. A high degree of vectorization suggests that the

compiler is effective with discovering the data-level paral-
lelism in each benchmark and expressing it with vector in-
structions. It also indicates that a significant portion of the
execution time can be accelerated using vector hardware.

The degree of vectorization is higher than 90% for 8 out
of 10 benchmarks. This is the case even for Viterbi, which is
considered difficult to parallelize and is only partially vec-
torized by the compiler. The remaining 10% includes the
operations in scalar instructions and the overhead of vector-
scalar communication over the coprocessor interface. Cjpeg
and Djpeg have the lowest degree of vectorization, approx-
imately 65%. They include functions for Huffman encod-
ing which are difficult to vectorize. Partial vectorization of
these functions would only be possible after significant re-
structuring of the C code.

Figure 3 presents the average vector length, in other
words the average number of data-parallel element opera-
tions specified by a vector instruction. Most benchmarks
use either 16-bit or 32-bit arithmetic operations, for which
the maximum supported vector length in the VIRAM pro-
cessor is 128 and 64 elements respectively. Since Cjpeg and
Djpeg use both data types at different points, we report two
separate averages for them. Long vectors are not necessary
but they are highly desirable. Operations on long vectors
can exploit multiple datapaths in parallel vector lanes for
several clock cycles. They also lead to power efficiency as
a single instruction fetch and decode defines a large number
of independent operations.

For five benchmarks, the vector length is close to the
maximum supported for the data type they use. The average
vector length is slightly lower for Autocor and Bital due to
the use of reduction operations, which progressively reduce
a long vector down to a single element sum. For Cjpeg,
Djpeg, and Viterbi, a vector instruction defines 10 to 20 el-
ement operations on the average. In the first two, the inner
loop for the DCT transformation on 8x8 pixel blocks is in a
separate function from the outer-loop. If we were to inline
the inner loop function by modifying the benchmark code,
the compiler would be able to perform outer-loop vector-
ization, which would lead to long vectors. With Viterbi, the
short vectors are fundamental to the nature of its algorithm.

4.2 Instruction Set Use

Figure 4 shows the distribution of vector operations for
the ten benchmarks. Simple integer operations, such as add,
shift, and compare account for 42% of all vector operations
on the average. The second most frequent category is unit
stride loads (17%). The average ratio of arithmetic opera-
tions to memory accesses is approximately 2:1.

In general, every vector instruction type is used in at least
a couple of benchmarks, which indicates a balanced instruc-
tion set design. The permutation instructions account for

only 2% of the dynamic operations count. However, they
are crucial with vectorizing Autocor, Bital, and Fft, which
include reduction or butterfly patterns. Similarly, condi-
tional execution of element operations is essential with vec-
torizing portions of Cjpeg, Bital, and Viterbi.

4.3 Code Size Comparison

Static code size is a secondary issue for desktop and
server systems, where high capacity hard disks store the ap-
plication executables. Most embedded systems, however,
store executables in non-volatile memory such as ROM or
Flash. Small code size is important in order to reduce the
capacity and, consequently, the cost of the code storage. It
also helps with reducing the power consumed for fetching
and decoding instructions.

We compared the density of the VIRAM executables to
that for a set of CISC, RISC, and VLIW architectures for
high performance embedded processors. Table 3 presents
the five alternative architectures, as well as the character-
istics of the specific processors we studied. We retrieved
their code size and all performance scores for the bench-
marks from official EEMBC reports submitted by the cor-
responding vendors [7]. Since no VLIW organization has
been evaluated for both categories, we refer to the Trimedia
VLIW architecture [19] for the consumer benchmarks and
the VelociTI VLIW architecture [24] for the telecommuni-
cations benchmarks.

Table 4 presents the code size comparison. We report
the size of executables in bytes, as well as the ratio to the
x86 code size in parenthesis. The x86 CISC architecture
includes variable length instructions and typically leads to
high code density. For VIRAM, we report two numbers for
each benchmark. The first one, specified as cc, is the size
of the executable produced by the VIRAM compiler. The
second one, specified as opt, is the size of the executable
after post-processing the compiler output in order to apply
the optimizations missing from the code generator. Even
though all optimizations target performance improvements,
the elimination of unnecessary spill code and redundant cal-
culations of constants also lead to smaller code size. Simi-
larly, we report two sets of numbers for the two VLIW ar-
chitectures. The first set (cc) represents the size of executa-
bles generated by compiling the original benchmark code.
The second set (opt) is the result of aggressive reorganiza-
tion of the C code in order to maximize the amount of in-
struction level parallelism that the compiler can extract. The
optimizations include function inlining, loop restructuring,
and manual insertion of SIMD or DSP instructions. Unlike
the back-end optimizations for VIRAM, the optimizations
for the Trimedia and VelociTI architectures are benchmark-
specific and difficult to incorporate into VLIW compilers.

For the consumer benchmarks, the original and opti-

0%

20%

40%

60%

80%

100%

Rgb
2c

myk

Rgb
2y

iq
Filte

r

Cjpe
g

Djpe
g

Auto
co

r

Con
ve

nc
Bita

l
Fft

Vite
rb

i

Ave
ra

ge

D
is

tr
ib

u
ti

o
n

 o
f

V
ec

to
r

O
p

er
at

io
n

s

Store Strided/Indexed

Store Unit Stride

Load Strided/Indexed

Load Unit Stride

Permutations

Flag

Integer Multiply

Integer Simple

Figure 4. The distribution of vector operations into instruction categories.

Architecture Processor Issue Execution Cache Size Clock Power
Width Style L1I L1D L2 Freq.

VIRAM Vector VIRAM 1 in order 8K – – 200 MHz 2.0 W
x86 CISC K6-IIIE+ 3 out of order 32K 32K 256K 550 MHz 21.6 W
PowerPC RISC MPC7455 4 out of order 32K 32K 256K 1000 MHz 21.3 W
MIPS RISC VR5000 2 in order 32K 32K – 250 MHz 5.0 W
Trimedia VLIW+SIMD TM1300 5 in order 32K 16K – 166 MHz 2.7 W
VelociTI VLIW+DSP TMS320C6203 8 in order 96K 512K – 300 MHz 1.7 W

Table 3. The characteristics of the embedded architectures and processors we compare in this paper.

mized executables for VIRAM are 40% and 10% larger than
the x86 code on the average. However, the VIRAM code is
actually denser for Rgb2cmyk, Rgb2yiq, and Filter. Cjpeg
and Djpeg contain large portions of rarely used code for
error handling for which x86 leads to denser scalar code
than MIPS. Optimized VIRAM code has the same code
density as PowerPC. However, it is 2 times smaller than
the MIPS code, 4 times smaller than the original Trimedia
code, and more than 10 times smaller than the optimized
Trimedia code. The fundamental reason for the good code
density of VIRAM is that the compiler does not use loop
unrolling or software pipelining. As we present in Sec-
tion 5, the VIRAM processor achieves high performance
without using the two techniques that lead to bloated code
size. On the other hand, VLIW architectures depend on
them heavily, especially when targeting maximum perfor-
mance. VLIW architectures incur the additional penalty of
empty slots in their wide instruction format. RISC architec-
tures rely less on loop unrolling, especially if the processor
implements out-of-order execution, as with the MPC7455
PowerPC chip. Despite the overhead of coprocessor move

instructions, VIRAM compares favorably to the RISC ar-
chitectures. Vector instructions eliminate the loop indexing
overhead for small, fixed-sized loops. In addition, a sin-
gle vector load-store instruction captures the functionality
of multiple RISC instructions for address generation, strid-
ing, and indexing.

Table 4 shows that the comparison is similar for the
telecommunication benchmarks. The optimized code for
VIRAM is smaller than the x86 code for all five bench-
marks, as the vector instructions for permutations elimi-
nate the need for complicated loops to express reductions
or butterflies. The VelociTI VLIW architecture produces
executable as large as the two RISC architectures. VelociTI
is built on top of a DSP instruction set, with features such as
zero-overhead loops and special addressing modes for FFT.

If we compare separately VIRAM to MIPS, the RISC
architecture it is based on, we conclude that adding vec-
tor instructions to a RISC architecture leads to significant
code size reductions. Vector instructions behave as ”useful
macro-instructions” for the MIPS architecture and allow for
code density similar or better than that of the x86 architec-

VIRAM x86 PowerPC MIPS Trimedia
(Vector) (CISC) (RISC) (RISC) (VLIW+SIMD)

(cc) (opt) (cc) (opt)

Rgb2cmyk 672 (0.9) 272 (0.4) 720 (1.0) 484 (0.7) 1,782 (2.5) 2,560 (3.6) 6,144 (8.5)
Rgb2yiq 528 (0.6) 416 (0.5) 896 (1.0) 492 (0.5) 1,577 (1.8) 4,352 (4.8) 34,560 (38.6)
Filter 1,328 (1.4) 708 (0.7) 944 (1.0) 1,188 (1.3) 1,997 (2.1) 4,672 (4.9) 3,584 (3.8)
Cjpeg 60,256 (2.0) 58,880 (1.9) 30,010 (1.0) 48,440 (1.6) 58,655 (1.9) 114,944 (3.8) 180,032 (6.0)
Djpeg 70,304 (2.0) 68,448 (1.9) 35,962 (1.0) 47,672 (1.3) 58,173 (1.6) 117,440 (3.3) 163,008 (4.5)

Average (1.4) (1.1) (1.0) (1.1) (2.0) (4.1) (12.3)

VIRAM x86 PowerPC MIPS VelociTI
(Vector) (CISC) (RISC) (RISC) (VLIW+DSP)

(cc) (opt) (cc) (opt)

Autocor 1,072 (1.9) 328 (0.6) 544 (1.0) 1,276 (2.3) 1,137 (2.1) 992 (1.8) 1,472 (2.7)
Convenc 704 (0.9) 352 (0.4) 784 (1.0) 1,788 (2.3) 1,618 (2.1) 1,120 (1.4) 2,016 (2.6)
Bital 1,024 (1.5) 592 (0.9) 672 (1.0) 1,820 (2.7) 1,495 (2.2) 2,304 (3.4) 1,376 (2.0)
Fft 3,312 (0.2) 720 (0.1) 15,670 (1.0) 5,868 (0.4) 5,468 (0.3) 2,944 (0.2) 3,552 (0.2)
Viterbi 2,592 (1.9) 1,152 (0.9) 1,344 (1.0) 6,648 (4.9) 3,799 (2.8) 1,920 (1.4) 2,560 (1.9)

Average (1.3) (0.6) (1.0) (2.5) (1.9) (1.6) (1.9)

Table 4. The code size comparison between vector, RISC, CISC, and VLIW architectures. The numbers
in parenthesis represent the ratio to the x86 code size.

ture.

5 Processor Evaluation

This section compares the VIRAM chip to the embed-
ded processors in Table 3. Their features are representa-
tive of the great variety in high performance, embedded de-
signs. The group includes representatives from three ba-
sic architectures (CISC, RISC, VLIW), two execution tech-
niques (in-order, out-of-order), and a range of instruction
issue rates (2 to 8), clock rates (166MHz to 1GHz), and
power dissipations (1.7W to 21.6W). The only common fea-
ture among all five processors we compare to VIRAM is that
they use SRAM caches for low memory latency.

Before we proceed with the performance comparison,
it is interesting to discuss power consumption and design
complexity. The typical power dissipation numbers in Ta-
ble 3 are not directly comparable. K6-III+, VR5000, and
TM1300 were designed in 0.25 � m CMOS technology, VI-
RAM and MPC7455 in 0.18 � m, and TMS320C6203 in
0.13 � m. The VIRAM power figure includes the power for
main memory accesses, which is not the case for any other
design. In addition, the VIRAM circuits were generated
with a standard synthesis flow and were not optimized for
low power consumption in any way. The power character-
istics of the VIRAM chip are entirely due to its microarchi-
tecture.

Nevertheless, we can draw the following general con-
clusions about power consumption. Superscalar, out-of-
order processors like K6-III+ and MPC7455 have the high-

est power consumption because of their high clock rates
and the complexity of their control logic. The simplicity
and lower clock frequency of VLIW processors allows for
reduced power consumption despite their high instruction
issue rates. The microarchitecture of the VIRAM proces-
sor allows for additional power savings. The parallel vec-
tor lanes are power efficient because they operate at a low
clock frequency and use exclusively static circuits. The
control logic dissipates a minimum amount of power be-
cause of its simplicity (single-issue, in-order) and because
it needs to fetch and decode merely one vector instruction in
order to execute tens of element operations. Finally, the on-
chip main memory provides high bandwidth without wast-
ing power for driving off-chip interfaces or for accessing
caches for applications with limited temporal locality.

Design complexity is also difficult to compare unless the
same group of people implements all processors in the same
technology with the same tools. However, we believe that
the VIRAM microarchitecture has significantly lower com-
plexity than superscalar processors. Both the vector copro-
cessor and the main memory system are modular, the con-
trol logic is simple, and there is no need for caches or circuit
design for high clock frequency. These properties allowed
6 graduate students to implement the prototype chip while
carrying a full-time course load. On the other hand, super-
scalar processors include complicated control logic for out-
of-order execution, which is difficult to design at high clock
rates. The development of a new superscalar microarchi-
tecture typically requires hundreds of man-years [2]. Even
though, VLIW processors for embedded applications are

12484116 17

0

2

4

6

8

10

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Geom.
Mean

P
er

fo
rm

an
ce

VIRAM (cc) VIRAM (opt) x86 PowerPC MIPS VLIW (cc) VLIW (opt)

Figure 5. The performance of the embedded processors for the EEMBC benchmarks.

simpler than superscalar designs, the high instruction issue
rate makes them more complicated than single-issue vector
processors. In addition, VLIW architectures introduce sig-
nificant complexity to the compiler development.

5.1 Performance Comparison

Figure 5 presents the performance comparison for the
EEMBC benchmarks. Performance is reported in iterations
per cycle and is normalized by the K6-III+ x86 proces-
sor. Even with unoptimized code, VIRAM outperforms the
x86, MIPS, and the two VLIW processors (TM1300 and
TMS320C605) running original code by factors of 2.5x to
6.1x for the geometric mean. It is 30% and 45% slower than
the 1GHz MPC7455 PowerPC and the two VLIW proces-
sors running optimized code respectively. With optimized
(scheduled) code, on the other hand, the VIRAM chip is
1.6 to 18.5 times faster than all other processors. To grasp
the significance of the performance results, one should also
consider that VIRAM is the only single-issue design in the
processor set, it is the only one that does not use SRAM
caches, and its clock frequency is the second slowest, just
one fifth of that for the 4-way issue MPC7455. In addition,
the VLIW performance with optimized code is the result
of program-specific optimizations, which are currently not
available in research or commercial compilers.

It is also interesting to separate the contributions to per-
formance from microarchitecture from the contributions
from clock frequency. VIRAM and the two VLIW designs
include simple control circuits and could be clocked as fast
as the superscalar processors, if not faster. Nevertheless,
they use modest clock frequencies (166MHz to 300MHz) in
order to reduce power consumption. Figure 6 presents the

performance results normalized to the clock frequency of
each processor2. For highly vectorizable benchmarks with
long vectors, such as Filter and Convenc, VIRAM is up to
100 times faster than the MPC7445 PowerPC, the best su-
perscalar design. Each vector instruction defines tens of in-
dependent element operations, which can utilize the paral-
lel execution datapaths in the vector lanes for several clock
cycles. On the other hand, the superscalar processors can
extract a much smaller amount of instruction-level paral-
lelism from their sequential instruction streams. For bench-
marks with strided and indexed memory accesses, such as
Rgb2cmyk and Rgb2yiq, VIRAM outperforms MPC7455
by a factor of 10. In this case, the limiting factor for VIRAM
is the address translation throughput in the vector load-store
unit, which is

�

� or
�

� of the throughput of each arithmetic
unit for 32-bit or 16-bit operations respectively. For par-
tially vectorizable benchmarks with short vectors, such as
Cjpeg, Djpeg, and Viterbi, VIRAM maintains a 3x to 5x per-
formance advantage over MPC7455. Even with just ten el-
ements per vector, simple vector hardware is more efficient
with data-level parallelism than aggressive, wide-issue, su-
perscalar organizations.

With the original benchmark code, the two VLIW pro-
cessors perform similarly to the superscalar designs. Source
code optimizations and the manual insertion of SIMD and
DSP instructions lead to significant improvements and al-
low the VLIW designs to be within 50% of VIRAM with
optimized code. For the consumer benchmarks, this is
due to Cjpeg and Djpeg, for which the performance of the

2Due to the measurement methodology for EEMBC, even cache-based
designs perform almost no off-chip memory accesses (see Section 3).
Hence, we can ignore the clock frequency of the off-chip memory system
during normalization.

3313111243 31

0

5

10

15

20

25

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Geom.
Mean

P
er

fo
rm

an
ce

/M
H

z
VIRAM (cc) VIRAM (opt) x86 PowerPC MIPS VLIW (cc) VLIW (opt)

Figure 6. The performance of the embedded processors for the EEMBC benchmarks normalized by
their clock frequency.

TM1300 VLIW processor improves considerably once the
benchmark code is restructured in order to eliminate the
function call within the nested loop for DCT. The same
transformation would have been beneficial for VIRAM, as
it would allow outer-loop vectorization and would lead to
long vectors. For the telecommunication benchmarks, the
DSP features of the TMS320C605 VLIW design lead to
enhanced performance. However, it is very difficult for a
compiler to achieve similar performance levels for an archi-
tecture that combines VLIW and DSP characteristics.

The results in Figure 6 would be similar if we normalized
performance by the typical power consumption instead of
clock frequency. The microarchitecture of VIRAM allows
for both higher performance and lower power consump-
tion than superscalar and VLIW processors for the EEMBC
benchmarks. We also believe that Figure 6 would be simi-
lar if we could normalize performance by some acceptable
metric of design complexity.

For reference, the EEMBC scores of the VIRAM proces-
sor for the consumer and telecommunications benchmarks
are 81.2 and 12.4 respectively with unscheduled code. With
optimized code, the scores are 201.4 and 61.7 respectively3.
In addition, VIRAM running optimized vector code is over
20 times faster for all benchmarks than VIRAM running
scalar code on the simple MIPS core it includes.

3The benchmark scores for the two categories are not directly compa-
rable to each other.

5.2 Scalability

One of the most interesting advantages of organizing the
vector hardware in lanes is that we can easily scale the per-
formance, power consumption, and area (cost) by allocating
the proper number of vector lanes. This is a balanced scal-
ing approach, as each lane includes both register and dat-
apath resources. Figure 7 presents the performance of the
VIRAM microarchitecture as we scale the number of lanes
from 1 to 8. We normalize performance to that with a sin-
gle lane. In all cases, we use the same executables and we
assume the same clock frequency (200 MHz) and on-chip
memory system.

With each extra lane, we can execute more element oper-
ations per cycle for each vector instruction. Hence, bench-
marks with long vectors benefit the most from additional
lanes. For Rgb2cmyk, Convenc, and Fft, performance
scales almost ideally with the number of lanes. For Rgb2yiq
and Filter, the fast execution of vector instructions with
8 lanes reveals the overhead of instruction dependencies,
scalar operations, and vector-scalar communication over the
coprocessor interface. Autocor and Bital include reduc-
tions, which operate on progressively shorter vectors, and
cannot always exploit a large number of lanes. Finally, for
the benchmarks with short vectors, such as Cjpeg, Djpeg,
and Viterbi, additional lanes lead to no significant perfor-
mance improvements.

Overall, the geometric mean in Figure 7 shows that per-
formance scales well with the number of lanes. Compared
to the single-lane case, two, four, and eight lanes lead to

0

1

2

3

4

5

6

7

8

Rgbcmyk Rgbyiq Filter Cjpeg Djpeg Autocor Convenc Bital Fft Viterbi Geom.
Mean

P
er

fo
rm

an
ce

1 Lane 2 Lanes 4 Lanes 8 Lanes

Figure 7. The performance of the VIRAM processor as a function of the number of vector lanes.

approximately 1.7x, 2.5x, and 3.5x performance improve-
ment respectively. Comparable scaling results are difficult
to achieve with other architectures. Scaling a 4-way su-
perscalar processor to 8-way, for example, would probably
lead to small overall performance improvement. It is diffi-
cult to extract such a high amount of instruction-level par-
allelism [25] and the complexity of the wide out-of-order
logic would slowdown the clock frequency [1]. A VLIW
processor could achieve similar scaling with highly opti-
mized code, at the cost of even larger code size and in-
creased power consumption for the wide instruction fetch.

6 Related Work

The popular approach to efficient media processing on
superscalar and VLIW processors is the use of SIMD exten-
sions, such as SSE [23] and Altivec [17]. SIMD instructions
define arithmetic operations on short, fixed-length vectors
of 32-bit or 16-bit elements, stored in 64-bit or 128-bit reg-
isters. In Section 4 (Figure 3), we showed that all EEMBC
benchmarks include vectors with more than 4 to 8 elements.
Hence, a superscalar processor must issue multiple SIMD
instructions per cycle in order to express the available data-
level parallelism and use parallel datapaths. In addition,
SIMD extensions do not support vector memory accesses.
The overhead of the sequence of load, unpack, rotate, and
merge instructions necessary to emulate a strided or indexed
vector access often cancels the benefits of SIMD arithmetic
and complicates automatic compilation.

The majority of recent work in vector architectures has
focused on adopting techniques from superscalar designs
(decoupling [9], out-of-order execution [11], simultaneous
multithreading [10]) in order to accelerate scientific appli-
cations. In [8], Espasa showed that Tarantula, an 8-lane

vector extension to the EV8 Alpha processor, achieves a 5x
speedup over a dual-processor EV8 chip of similar com-
plexity and power consumption. Nevertheless, a few aca-
demic groups have studied vector designs with multimedia.
T0, a SRAM-based vector processor, was the precursor to
VIRAM processor [3]. For speech recognition software, it
was 10 times faster than its contemporary superscalar de-
signs. In [22], Stoodley and Lee showed that simple vector
processors outperform superscalar designs with SIMD ex-
tensions by up to a factor of 3x for a variety of media tasks.
The two main problems with the previous studies of vector
processors have been the performance of the vector memory
system and automatic vectorization. This paper addresses
the former with the embedded DRAM main memory sys-
tem in the VIRAM chip, and the latter with the Cray-based
vectorizing compiler for the VIRAM architecture.

The Imagine stream processor introduces an alternative
architecture for multimedia processing [18]. It is based on
a set of clusters that include a datapath and a local register
file. It implements computation by streaming data through
the clusters under microcoded control. Imagine exposes
its computation and communication resources to software,
which makes it possible to exploit data-level parallelism in
the most flexible way. The price for the flexibility is a com-
plicated programming model based on a special dialect of
C. In contrast, the VIRAM programming model is based on
standard C or C++ with automatic vectorization.

7 Conclusions

Multimedia processing on embedded systems is an
emerging computing area with significantly different needs
from the desktop domain. It requires high performance for
data-parallel tasks, low power consumption, reduced design

complexity, and compact code size. Despite their theoretical
generality, superscalar processors cannot exploit the data-
level parallelism in order to improve performance or reduce
power dissipation and design complexity.

In this paper, we have demonstrated the efficiency of
the VIRAM vector architecture for the EEMBC embedded
benchmarks. The VIRAM code is up to 10 times smaller
than VLIW code and comparable to the x86 CISC code.
A simple, modular implementation of the VIRAM archi-
tecture is 2 times faster than a 4-way superscalar processor
with a 5 times faster clock frequency and a 10 times higher
power consumption. Despite its lack of SRAM caches and
the fact that the EEMBC measurement methodology favors
cache-based designs, the VIRAM chip outperforms VLIW
processors by a factor of 10. Even after manual optimization
of the VLIW code and insertion of SIMD and DSP instruc-
tions, the single-issue VIRAM processor is 60% faster than
5-way to 8-way VLIW designs.

The overall effectiveness of VIRAM suggests that vector
architectures can play a leading role in embedded multime-
dia systems.

8. Acknowledgments

We would like to acknowledge all the members of the
IRAM research group at U.C. Berkeley and in particu-
lar Sam Williams, Joe Gebis, Kathy Yelick, David Judd,
and David Martin. This work was supported by DARPA
(DABT63-96-C-0056), the California State MICRO Pro-
gram, and an IBM Ph.D. fellowship. IBM, MIPS Technolo-
gies, Cray, and Avanti have made significant hardware and
software contributions to the IRAM project.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock
Rate vs IPC: The End of Road for Conventional Microarchi-
tectures. In the Proceedings of the 27th Intl. Symposium on
Computer Architecture, pages 248–259, Vancouver,Canada,
June 2000.

[2] A. Allan, D. Edenfeld, W. Joyner, A. Kahng, M. Rodgers,
and Y. Zorian. 2001 Technology Roadmap for Semiconduc-
tors. IEEE Computer, 35(1):42–53, Jan. 2002.

[3] K. Asanović, J. Beck, B. Irissou, B. Kingsbury, and
J. Wawrzynek. T0: A Single-Chip Vector Microprocessor
with Reconfigurable Pipel ines. In the Proceedings of the
22nd European Solid-State Circuits Conference, Sept. 1996.

[4] G. Bell and J. Gray. What’s Next in High performance Com-
puting? Communications of the ACM, 45(2):91–95, Feb.
2002.

[5] W. Dally. Tomorrow’s Computing Engines. Keynote Speech,
the 4th Intl. Symposium on High-Performance Computer Ar-
chitecture, Las Vegas, NV, Feb. 1998.

[6] K. Diefendorff and P. Dubey. How Multimedia Workloads
Will Change Processor Design. IEEE Computer, 30(9):43–
45, Sept. 1997.

[7] EEMBC Benchmark Scores. http://www.eembc.org.
[8] R. Espasa, J. Emer, et al. Tarantula: a Vector Extension to

the Alpha Architecture. In the Proceedings of the 29th Intl.
Symposium on Computer Architecture, Anchorage, AL, May
2002.

[9] R. Espasa and M. Valero. Decoupled Vector Architec-
ture. In the Proceedings of the 2nd Intl. Symposium on
High-Performance Computer Architecture, pages 281–90,
San Jose, CA, Feb. 1996.

[10] R. Espasa and M. Valero. Simultaneous Multithreaded Vec-
tor Architecture. In the Proceedings of the 4th Intl. Confer-
ence on High-Performance Computing, pages 350–7, Banga-
lore, India, Dec. 1997.

[11] R. Espasa, M. Valero, and J. Smith. Out-of-order Vector
Architectures. In the Proceedings of the 30th Intl. Sympo-
sium on Microarchitecture, pages 160–70, Research Triangle
Park, NC, Dec. 1997.

[12] R. Ho, K. Mai, and M. Horowitz. The future of wires. Pro-
ceedings of the IEEE, 89(4):490–504, Apr. 2001.

[13] C. Kozyrakis. Scalable Vector Media-processors for Embed-
ded Systems. PhD thesis, Computer Science Division, Uni-
versity of California at Berkeley, 2002.

[14] C. Kozyrakis, J. Gebis, et al. VIRAM: A Media-oriented
Vector Processor with Embedded DRAM. In the Conference
Record of the Hot Chips XII Symposium, Palo Alto, CA, Aug.
2000.

[15] C. Kozyrakis, D. Judd, et al. Hardware/compiler Codevelop-
ment for an Embedded Media Processor. Proceedings of the
IEEE, 89(11):1694–709, Nov 2001.

[16] M. Levy. EEMBC 1.0 Scores, Part 1: Observations. Micro-
processor Report, pages 1–7, Aug. 2000.

[17] M. Phillip. A Second Generation SIMD Microprocessor Ar-
chitecture. In the Conference Record of the Hot Chips X Sym-
posium, Palo Alto, CA, Aug. 1998.

[18] S. Rixner, W. Dally, et al. A Bandwidth-Efficient Architec-
ture for Media Processing. In the Proceedings of the 31st
Intl. Symposium on Microarchitecture, pages 3–13, Dallas,
TX, Nov. 1998.

[19] G. Slavenburg, S. Rathnam, and H. Dijkstra. The Trimedia
TM-1 PCI VLIW Media Processor. In the Conference Record
of the Hot Chips VIII Symposium, Palo Alto, CA, Aug. 1996.

[20] J. Smith. The Best Way to Achieve Vector-Like Perfor-
mance? Keynote Speech, the 21st Intl. Symposium on Com-
puter Architecture, Chicago, IL, April 1994.

[21] J. Smith, G. Faanes, and R. Sugumar. Vector Instruction Set
Support for Conditional Operations. In the Proceedings of
27th Intl. Symposium on Computer Architecture, pages 260–
9, Vancouver, BC, Canada, June 2000.

[22] M. Stoodley and C. Lee. Vector Microprocessors for Desktop
Computing. In the Proceedings of the 32nd Intl. Symposium
on Microarchitecture, Haifa, Israel, Nov. 1999.

[23] A. Strey and M. Bange. Performance Analysis of Intel’s
MMX, and SSE. In the Proceedings of the 7th EuroPAR
Conference, pages 142–147, Manchester, UK, Aug. 2001.

[24] C. Truong. The VelociTI Architecture of the TMS230C6x.
In the Conference Record of Hot Chips IX Symposium, Palo
Alto, CA, Aug. 1997.

[25] D. Wall. Limits of Instruction-level Parallelism. In the Pro-
ceedings of the 4th Intl. Conference on Architectural Support
for Programming Languages and Operating Systems, pages
176–88, Santa Clara, CA, April 1991.

