
Evaluation of Existing Architectures in IRAM Systems

Ngeci Bowman, Neal Cardwell, Christoforos E. Kozyrakis, Cynthia Romer and Helen Wang �

Computer Science Division
University of California–Berkeley

fbowman,neal,kozyraki,cromer,helenjwg@cs.berkeley.edu

Abstract

Computer memory systems are increasingly a bottleneck lim-
iting application performance. IRAM architectures, which in-
tegrate a CPU with DRAM main memory on a single chip,
promise to remove this limitation by providing tremendous
main memory bandwidth and significant reductions in memory
latency. To determine whether existing microarchitectures can
tap the potential performance advantages of IRAM systems,
we examined both execution time analyses of existing micro-
processors and system simulation of hypothetical processors.
Our results indicate that, for current benchmarks, existing ar-
chitectures, whether simple, superscalar or out-of-order, are
unable to exploit IRAM’s increased memory bandwidth and
decreased memory latency to achieve significant performance
benefits.

1 Introduction

One proposed solution to the growing gap between micropro-
cessor performance and main memory latency is to integrate
a processor and DRAM on the same die, an organization we
refer to as Intelligent RAM (IRAM) [10]. Because all mem-
ory accesses remain on-chip and the memory bus width is no
longer influenced by pin constraints, IRAM should improve
main memory bandwidth by two orders of magnitude and main
memory latency by one order of magnitude.

It is not clear what processor microarchitecture will best be
able to turn these advantages into significant application per-
formance benefits. However, there are several reasons to prefer
existing general-purpose microarchitectures, such as wide su-
perscalar, dynamic (out-of-order) execution, or even simple in-
order RISC CPUs, for IRAM systems. Current organizations
already achieve impressive performance across many classes
of applications, including personal productivity applications,
graphics, databases, scientific computation, and software de-
velopment. Furthermore, the performance trade-offs for such
architectures are well-understood, and we already have the
tools and know-how to design, debug, and tune both the ar-

�This work was supported by DARPA (DABT63-0056), the California State
MICRO Program and research grants and fellowships from Intel, Sun Microsys-
tems and the National Science Foundation.

chitectures and the software that runs on them. Perhaps most
important is the consideration of binary compatibility for ex-
isting software: there already exists a large body of system
software and applications that could be used “out of the box”
if an existing architecture is adopted. Higher application per-
formance would only require tuning programs and compilers
to the specific characteristics of the new memory hierarchy.

For this work, we evaluated the performance implications of
this evolutionary approach of combining an existing microar-
chitecture with an IRAM memory hierarchy. Our investigation
had two complementary aspects. First we measured and ana-
lyzed the performance of applications on two existing micro-
processors – one simple superscalar processor and one complex
out-of-order processor – and used these results to predict the
performance of a hypothetical, otherwise identical system with
an IRAM memory hierarchy. Subsequently we used complete
system simulations to obtain a detailed performance evaluation
of simple IRAM and conventional processors.

The remainder of this paper is organized as follows: Section
2 presents the main implementation and architectural consid-
erations for IRAM systems and section 3 describes the bench-
marks used in this study. Section 4 discusses our analytic
evaluation of IRAM implementations of two existing architec-
tures. Section 5 describes the results of simulations of simple
conventional and IRAM systems. Finally, section 6 presents
our conclusions from these studies and suggests directions for
future IRAM research.

2 Implementation and Architectural Considerations

There are several significant ways in which IRAM systems will
differ from today’s microprocessors: the integration of DRAM
on-chip, the resulting high-bandwidth main memory bus, the
elimination of L2 caches, and a potential slow-down incurred
by logic in today’s DRAM processes.

The primary difference between IRAM systems and conven-
tional systems will, of course, be the integration of large
amounts of DRAM on-chip. For example the DEC Alpha
21164 processor, with 16KBytes of first level caches and
96KBytes of L2 cache, occupies 299mm2 in a 0:5�m CMOS
process. In a 256Mbit DRAM 0:25�m CMOS process [12],



this would take up approximately 75mm2, or one fourth of the
die area. This allows up to 24MBytes of on-chip DRAM mem-
ory in the remaining area. While this may not be sufficient by
itself for high-end workstations, it is enough for low-end PCs
and portable computers. The memory access time for such a
system could can be as low as 21ns, since off-chip communica-
tion over high-capacity busses has been eliminated [10]. This
is up to ten times faster than the main memory access times of
current conventional systems.

Second, since these access times for the on-chip main memory
[8] can be comparable to that of SRAM L2 caches today, using
die area for an L2 cache provides little performance improve-
ment. This area can instead be used for on-chip DRAM, which
is more than 10 times as dense [5]. Consequently, the IRAM
systems we consider in this study have no L2 caches.

Third, because main memory will be integrated on-chip, IRAM
systems can be designed with memory busses as wide as de-
sired. Given that the memory bus will connect the main mem-
ory to the L1 cache, the bus width should probably be equal to
the L1 cache block size.

Finally, initial IRAM implementations may suffer from logic
speed degradation. Existing DRAM technology has been op-
timized for density and yield, so logic transistors and gates in
DRAM processes are slower than those in corresponding logic
processes. This can translate to a processor clock frequency
up to 1.5 times slower than that of similar architectures imple-
mented with conventional logic processes [5] [10]. Fortunately,
high-speed logic in DRAM processes has already been demon-
strated in prototype systems, so it is expected that within a few
years logic in DRAM chips will be as fast as microprocessor
logic.

3 Benchmarks and Applications

Table 1 describes the benchmarks and applications used for
this evaluation.

SPEC 95 [1] is the current industry-accepted standard for
uniprocessor performance evaluation. We used three of the
floating point programs of the suite (tomcatv, su2cor, wave5)
and all eight integer benchmarks. All SPEC 95 programs were
compiled with base settings and run on the complete reference
inputs.

Unfortunately, SPEC 95 benchmarks do not exercise all levels
of memory hierarchy and are not considered representative of
possible workloads for current and future systems. To study the
behavior of a broader range of applications, we employed three
additional benchmarks for this study. Mpeg encode, which
encodes static frames into a MPEG video file, is a represen-
tative multimedia application. Linpack1000, a double preci-
sion linear equation solver, is characteristic of many scientific
codes. Finally, disk-to-disk sorting represents the databases
field, where operations are performed on large collections of
data.

Benchmark Description

tomcatv Mesh Generation: generates a 2-D mesh
su2cor Quantum Physics: computes masses of

elementary particles using a Monte Carlo
method and the Quark-Gluon theory

wave5 Electromagnetics: solves Maxwell’s
equations on a Cartesian mesh using a
variety of boundary conditions

gcc Compiler: uses the GNU C compiler to
convert a set of preprocessed source
files into Sparc assembly language

compress Compression: compresses large files
using adaptive Lempel-Ziv coding

li Lisp Interpreter: uses a Lisp interpreter
to interpret a set of programs

ijpeg Imaging: performs JPEG image compression
perl Perl Interpreter: Uses Perl to perform

text and data manipulation
go Artificial Intelligence: Plays the game GO

against itself
vortex A single user O-O database transaction

benchmark. Builds and manipulated 3
interrelated databases

m88ksim Simulator: Simulates the Motorola
88100 processor

mpeg encode Video Encoding: encodes 48 720x480 color
frames into a MPEG video file

linpack1000 Equation Solver: 1000x1000 sparse linear
equation solver (double precision)

sort Sorting Program: disk-to-disk sort of
100-byte records of a 21MByte database

Table 1: The benchmarks and applications used in this study.

4 Evaluating IRAM through Measurement and Ex-
trapolation

Our initial approach to evaluating current microarchitectures
implemented as IRAM systems was analytical. The goal was to
analyze the execution behavior of applications on two existing
organizations and estimate the effect of an IRAM implementa-
tion on the total execution time and its individual components.
This allowed us to compare the potential performance of the
IRAM implementations to that of the originals.

The two architectures examined in this study were the DEC Al-
pha 21064 [4] and the Intel Pentium Pro [2]. The Alpha 21064
uses a simple dual-issue, in-order execution organization with
direct-mapped, blocking caches. By contrast, the Pentium Pro
employs an aggressive triple-issue architecture, with out-of-
order and speculative execution, a deeper pipeline, and 4-way
set-associative, non-blocking caches. Table 2 summarizes the
main characteristics of the two processors. These two orga-
nizations represent contrasting approaches to microprocessor
architecture. Alpha’s simplicity leads to implementations with
extremely high clock frequencies. With the second approach,
performance comes from advanced architecture techniques like
out-of-order execution. Choosing these two architectures en-
abled us to estimate the potential IRAM performance for both
approaches and evaluate the benefit from using similar ad-
vanced techniques within IRAM systems.

The potential IRAM implementations of the two architectures



Aplha 21064 Pentium Pro
Pipeline in-order out-of-order
CPU Frequency 133MHz 200MHz
Issue Rate 2-way 3-way
L1 Configuration 8KB I + 8KB D 8KB I + 8KB D
L1 Associativity Direct Map 4-way
L1 Access Time 22.5ns 15ns
L2 Configuration 512KB 256KB
L2 Associativity Direct Map 4-way
L2 Type Off-chip SRAM Off-chip SRAM
L2 Access Time 37.5ns 20ns
Memory 64MB EDO DRAM 64MB EDO DRAM
Total Latency 180ns 220ns

Table 2: Architecture characteristics of the Alpha 21064 and
the Pentium Pro.

that we considered for evaluation differ from the originals in
only two respects. IRAM models include 24MBytes of on-chip
DRAM used as main memory but no second level caches. The
remaining system components are exactly the same, including
the memory bus width. Therefore, the main parameters that
lead to performance differences are the types and delays of
memory accesses and the speed of logic in the IRAM systems,
which determines the clock frequency.

4.1 Methodology

We estimated the performance of the IRAM Alpha and Pentium
Pro implementations by analyzing the components of program
execution times on the original implementations. The on-chip
programmable hardware counters available in both processors
were used to perform detailed profiling and measurements
without affecting the program behavior [4]. The measure-
ments included processor and memory hierarchy events like
issue and stall cycles, branch mispredictions, TLB misses, and
memory references and miss rates at each level of the memory
hierarchy. For this study, we concentrated mainly on memory-
related events whose type and delay may change due to the
addition of on-chip DRAM.

The execution time of a program on an IRAM implementation
can be predicted by examining how the parameters of IRAM
systems affect each of the execution time components on the
original architecture. Time spent on events unrelated to the
memory hierarchy, like issue cycles or stalls due to mispredic-
tions, is only affected by a potential clock frequency difference.
Keeping in mind that L1 cache misses in the IRAM implemen-
tations are served by the on-chip DRAM, the time spent in the
memory hierarchy is equal to the product of the L1 miss count
and the memory access time. A simplified version of the model
we used for the execution time of IRAM implementations for
a given application is:

ET =
Tcomputation

clock speedup
+

L1 miss count�Tmemory access

memory access speedup

Tcomputation, L1 miss count and Tmemory access are, respec-
tively, the time spent on computation and non memory-related
events, the L1 cache miss count, and the off-chip memory
access time for the original implementation. Clock speedup
and memory access speedup are the ratios of clock frequency

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 4 5 6 7 8 9 10

S
p
e
e
d
u
p
:
 
I
R
A
M
 
A
l
p
h
a
 
2
1
0
6
4

Main Memory Access Speedup

Spec95Int
Mpeg_encode
Linpack1000

Sort

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 3 4 5 6 7 8 9 10

S
p
e
e
d
u
p
:
 
I
R
A
M
 
P
e
n
t
i
u
m
 
P
r
o

Main Memory Access Speedup

Spec95Int
Mpeg_encode
Linpack1000

Sort

Figure 1: Applications speedup for IRAM Alpha 21064 (top)
and IRAM Pentium Pro (bottom) over the original implemen-
tations.

and main memory access time of the original to that of the
IRAM implementation. The complete equation also accounts
for memory-related events like TLB and compulsory misses.

Using the Alpha and Pentium Pro execution time models, we
evaluated the speedup of the two IRAM implementations over
the corresponding originals for the SPEC 95 integer programs,
mpeg encode, linpack1000 and sort. For both IRAM imple-
mentations we assume that the processor logic and L1 caches
are as fast as in the conventional systems. Since the work-
ing sets of these applications are small enough (less than 24
MBytes) to fit completely in the on-chip DRAM, even for initial
IRAM implementations, we assume that, apart from compul-
sory misses, no time-consuming off-chip access are necessary.
Given these two facts, the calculated speedup is a best-case
indication of the potential performance of the IRAM imple-
mentations of these architectures.

4.2 Results

Figure 1 shows the speedup of the two IRAM implementations
over the corresponding originals as a function of main memory
access speedup. For the case of the SPEC95int programs, we
present the average speedup. Given that the off-chip mem-
ory access latency of current systems varies between 150 ns
to 250 ns depending on the type of DRAM used, and since



memory access time in IRAM systems can be as low as 21ns,
this ratio is expected to vary between 2 and 10, with 5-10 being
the most likely range.

The execution analysis of these applications revealed that they
can be separated into two categories. The first category in-
cludes computation-intensive applications, like mpeg encode
and SPEC 95, where the dominant component of the execu-
tion time is not related to the memory hierarchy. For these
programs, main memory accesses account for less than 20%
of the total execution time. Sort and linpack1000, on the other
hand, spend from 40% to 55% of execution time waiting for
memory references, of which a significant part comes from
main memory accesses.

For computation-intensive applications, IRAM implementa-
tions range from two times slower to slightly faster, depending
on the speed of accesses to main memory. Since the dominant
component of execution time for these applications is actual
computation, in no case are they significantly helped by the
faster main memory system offered by IRAM.

For memory-intensive applications, the speedups are more sig-
nificant, in the range of 1.5 to 2. This is due to the large amount
of time spent waiting for off-chip memory accesses in the orig-
inal implementations, which is almost eliminated in the IRAM.

Main memory access speedups higher than 6 do not lead to
corresponding increases in application speedup. For very low
memory access speedups (close to 2), performance is surpris-
ingly low because the on-chip DRAM in the IRAM systems is
actually slower than the L2 caches of the original implementa-
tions. Though memory latency for IRAM systems is likely to
be 5-10 times faster than conventional systems, figure 1 shows
that IRAM designers must be careful to eliminate L2 caches
only if the on-chip DRAM is sufficiently fast.

For example, for the original Pentium Pro with off-chip EDO
DRAM, the L2 and main memory access times are 35 ns and
220 ns respectively. An IRAM memory speedup factor of 2
makes L1 cache misses cost 110 ns, significantly worse than the
original 35 ns for L2 accesses on the Pentium Pro. Therefore,
since most of the L1 cache misses for these programs are
served by the Pentium Pro’s L2 cache, the performance of
IRAM implementations is lower than that of the conventional.

A detailed description of this analysis and its results is pre-
sented at [9].

5 Evaluating IRAM through Simulation

In addition to evaluating IRAM implementations of two exist-
ing microarchitectures using performance measurements and
analytic models, we simulated several simple IRAM systems to
verify these results. Detailed simulation can reflect subtle and
unanticipated interactions between aspects of a complex sys-
tem that analytical approaches cannot capture. Furthermore,
it enables evaluation of the effect of simple enhancements to
the system architecture, like increases to the main memory bus
width or the cache size.

There were two problems to address before we could deter-
mine our architectural simulation space. First we had to se-
lect an appropriate existing microprocessor architecture for an
IRAM. We chose to simulate a simple, single-issue, in-order
RISC CPU, since today’s dynamically scheduled processors
are complex, energy-inefficient systems designed largely to
minimize slow memory latencies, a problem which should not
exist in an IRAM. Given this microprocessor architecture, our
next task was to determine the means to assess the relative per-
formance of our simulated IRAM architectures. We decided
to do this by comparing them with a hypothetical conventional
microprocessor chip of equal die area.

The area consumed by IRAMs will be dominated by main
memory. Given current trends in software memory re-
quirements, we estimate that an IRAM will require at least
24MBytes to run interesting desktop and portable applications.
This implies a 256Mbit DRAM technology, which should be
commercially available in 1998. For this reason we chose to
compare hypothetical 1998 IRAM models to a conventional
computer system that we think will be adequate for 1998 desk-
top markets. A likely configuration for a conventional ma-
chine is a split L1 cache with 64KByte instruction cache and
64KByte data cache and a large unified L2 cache, with fast
SDRAM main memory. As explained in section 2, second
level caches will not benefit IRAM systems, so our simulated
IRAM models have a single level of cache.

One caveat when comparing such disparate architectures is
selecting configurations with equal die sizes. The three main
components of die area in our models are the CPU, the caches,
and any other on-chip memory. Both the IRAM models and
the conventional model have a simple RISC CPU core. Both
IRAM and conventional models include a 128KByte L1 SRAM
cache on-chip. Our conventional machine uses the remaining
on-chip area for a 2 MByte L2 SRAM cache, whereas an
IRAM includes 24 MBytes of DRAM, which is treated as
main memory. Since DRAM is approximately 16 to 32 times
more dense than SRAM embedded on a microprocessor [5],
these areas should be roughly equal, again assuming a 256Mbit
DRAM 0.25 �m CMOS process.

5.1 Simulation Models

Table 3 lists the parameters for the architectural models used in
the simulations. To maintain a manageable simulation space
we restricted ourselves to modeling three different IRAM con-
figurations and one conventional machine. All parameters of
the conventional machine remained constant for all simula-
tions; the only parameters of the IRAM machines that varied
were the CPU clock rate and the DRAM access time. A wider
main memory bus width (128 Bytes) was assumed for IRAM
models, to take advantage of the additional memory bandwidth.
The memory bus is set to be as wide as the L1 cache block size.
In order to isolate the effects of changing architectural param-
eters on IRAM performance, we allowed only one parameter
of the IRAM model to vary at any time. The default IRAM
parameters we used were a 333 MHz clock rate and a 33 ns
memory latency.

We identified CPU clock rate and memory latency as the pa-
rameters of primary interest to our investigation. Since it is



IRAM Conventional
Pipeline simple in-order simple in-order
CPU frequency vary: 333, 500 MHz 500 MHz
technology 0.25 �m DRAM 0.25 �m logic
L1 configuration 64 KB I + 64 KB D 64 KB I + 64 KB D
L1 associativity 2-way 2-way
L1 block size 128 Bytes 64 Bytes I / 32 Bytes D
L1 type SRAM on-chip SRAM on-chip
L1 access time 1 CPU cycle 1 CPU cycle
L2 configuration – 2 MB unified
L2 associativity – 2-way
L2 block size – 128 Bytes
L2 type – SRAM on-chip
L2 access time – 12 CPU cycles
memory configuration 24 MBytes (192 Mbit) DRAM on-chip 24 MBytes 166 Mhz SDRAM off-chip
memory bus width 1024 bits (128 Bytes) 128 bits (16 Bytes)
total latency vary: 21, 33 ns 116 ns

Table 3: Architectural models for IRAM and conventional machines of 1998.

estimated that logic in initial IRAM implementations may be
up to 1.5 times slower than logic in a microprocessor process,
we picked two possible CPU clock rates that span this entire
space. To investigate the memory latency advantages of IRAM
we chose two values for IRAM main memory access latency,
an optimistic one (21 ns) and a pessimistic one (33 ns).

5.2 Methodology

To simulate these conventional and IRAM architectures we ex-
tended the 1.0 release of SimOS, a complete computer system
simulation tool developed at Stanford [7] [11]. The standard
version of SimOS 1.0 simulates a Silicon Graphics uniproces-
sor or multiprocessor workstation, including MIPS processors,
two levels of cache, multiprocessor memory busses, memory,
disk drives, consoles, and Ethernet devices, in enough detail to
boot and run a slightly modified version of IRIX 5.3. SimOS
allows the processor clock rate and memory bus width to be
specified; we modified it to allow for a single-level cache hier-
archy and a parameterizable main memory access time.

In this case, we selected for simulation eight of the SPEC
95 floating point and integer benchmarks in addition to lin-
pack1000. These were tomcatv, su2cor, wave5, gcc, com-
press, li, ijpeg and perl. We simulated the execution of each
benchmark program on all three IRAM models as well as the
conventional model.

5.3 Results

Figure 2 presents the application speedup of IRAMmodels over
the 500MHz conventional model for the SPEC 95 programs
and linpack100. For the case of the SPEC 95 benchmarks, we
present the geometric mean of application speedups. As with
the analytic results in section 4, the benchmarks fall into two
classes: memory hierarchy intensive, and CPU-bound.

As with the analytic results, the linpack1000 benchmark
demonstrates the behavior of a memory-intensive application.
Memory stall time accounts for 32% of execution time for the

500MHz conventional machine, but only 7% of execution time
for the 500MHz IRAM, due to increased bandwidth and de-
creased memory latency. However, this results in only a 40%
speedup for the 500MHz IRAM compared to our conventional
model.

Figure 2 shows that, in accordance with with the results from
section 4, simple IRAM architectures do not appear to offer
large performance improvement over conventional machines
for SPEC 95 applications. The maximum speedup ranges
from almost 1 to 1:15. IRAM models with clock frequency
of 333 MHz are actually slower than the conventional model.
This is in part because the SPEC 95 applications fit well within
the 2MByte L2 cache of the conventional machine, so that even
the decreased memory latency of the IRAM implementations
offers no significant advantage.

A more complete discussion of the simulation results can be
found at [3].

6 Concluding Remarks

Both the execution analysis and simulation approaches sug-
gest that the potential performance benefits from using existing
microarchitectures in IRAM systems are limited. Such evo-
lutionary IRAM implementations will range from equally fast
for CPU intensive applications up to two times faster in the
best case for some memory-intensive applications. For com-
parison it is useful to note that conventional processors double
in speed every 18 months [6], so that similar speedups can be
reached with conventional architecture and process technol-
ogy improvements in less than two years, without requiring
the modification to current integrated circuits fabrication and
processing techniques that IRAM will entail.

The fundamental reason for this limitation is the inability of
today’s conventional microarchitectures to take advantage of
the phenomenal main memory bandwidth that becomes avail-
able on-chip in IRAM systems [10]. Current architectures
have been developed under the implicit assumption that the
connection with main memory has both high latency and low



0

0.2

0.4

0.6

0.8

1

1.2

1.4

IRAM 333 MHz
33ns

IRAM 333 MHz
21ns

IRAM 500 MHz
33ns

Simulated Models

A
pp

lic
at

io
n 

S
pe

ed
up

SPEC95
Linpack

Figure 2: Simulation results for SPEC 95 (left) and linpack1000 (right) benchmarks, presented as speedups over the execution time
for the 500MHz conventional model with 116 ns main memory latency. Larger bars are better. See Table 3 for configuration details.

bandwidth, and thus these architectures strive to minimize their
use of main memory. Consequently, to use IRAM to beef up
main memory for an attack on this already-small fraction of
execution time on conventional microarchitectures is to ignore
Amdahl’s law.

Still, using simple conventional architectures in IRAM sys-
tems has some advantages that are very important in certain ar-
eas. Simple, energy-efficient RISC processor cores combined
with IRAM memory systems can be very energy-efficient [5],
which translates to longer battery life for portable systems.
In addition, significant cost reduction derives from the higher
integration level and smaller overall system area (system-on-
a-chip). Therefore, IRAM implementations of existing simple
microarchitectures can be an attractive alternative for the em-
bedded and portable domains, where cost and power are more
important that pure performance.

But ultimately, in order to achieve high performance in IRAM
systems, new architectures must be employed. The basic char-
acteristic of such organizations must be the ability to make
efficient use of the high memory bandwidth available and to
turn it into application performance. A second desirable fea-
ture is performance which scales as the capacity and speed of
integrated circuits increases. Architectures that are thought to
have such qualities include vector processors, multi-threaded
processors, and multiprocessors-on-a-chip. Evaluating these

and other, perhaps new, architectures within the IRAM context
is an open area for research.

References

[1] SPEC CPU95 benchmarks. http://www.specbench.org/
osg/cpu95/.

[2] BHANDARKAR, D., AND DING, J. Performance character-
ization of the Pentium Pro processor. In Proceedings of
the Third International Symposium on High-Performance
Computer Architecture (February 1997).

[3] BOWMAN, N., CARDWELL, N., AND ROMER, C.
The performance of Real Applications and Op-
erating Systems on Simple IRAM Architectures.
http://www.cs.berkeley.edu/�neal/iram/simIRAM.html.

[4] CVETANOVIC, Z., AND BHANDARKAR, D. Characteriza-
tion of ALPHA AXP performance using TP and SPEC
woarkloads. In Proceedings of the 21st Annual Inter-
national Symposium on Computer Architecture (April
1994), pp. 60–70.

[5] FROMM, R., ET AL. The Energy Efficiency of IRAM Ar-
chitectures. In the Proceedings of the 24th International
Symposium on Computer Architecture (June 1997).



[6] HENNESSY, J., AND PATTERSON, D. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann
Publishers, Inc, San Francisco, CA, 1996.

[7] HERROD, S., ET AL. The SimOS simulation environment.
http://www-flash.stanford.edu/SimOS, Sept. 1996.

[8] KOIKE, H., ET AL. A 30ns 64Mb DRAM with built-in self-
test and repair function. In Digest of Technical Papers,
1996 IEEE International Solid-State Circuits Conference
(San Francisco, CA, Feb. 1996), pp. 150–151, 270.

[9] KOZYRAKIS, C., AND WANG, H. Evaluation and Compari-
son of Existing Cache Designs Implemented as an IRAM.
http://www.cs.berkeley.edu/�kozyraki/project/252/.

[10] PATTERSON, D., ET AL. A Case for Intelligent RAM.
IEEE MICRO 17, 2 (April 1997), 34–44.

[11] ROSENBLUM, M., ET AL. Complete computer system sim-
ulation: The SimOS approach. In IEEE Parallel and Dis-
tributed Technology: Systems and Applications (Winter
1995), vol. 3, pp. 34–43.

[12] SAEKI, T., ET AL. A 2.5ns clock access 250MHz 256Mb
SDRAM with a synchronous mirror delay. In Digest of
Technical Papers, 1996 IEEE International Solid-State
Circuits Conference (San Francisco, CA, Feb. 1996),
pp. 374–375.


