
Scalable Vector Media-processors

for Embedded Systems

Christoforos Kozyrakis

Report No. UCB/CSD-02-1183

May 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Scalable Vector Media-processors
for Embedded Systems

by

Christoforos Kozyrakis

Grad. (University of Crete, Greece) 1996
M.S. (University of California at Berkeley) 1999

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David A. Patterson, Chair
Professor Katherine Yelick

Professor John Chuang

Spring 2002

Scalable Vector Media-processors
for Embedded Systems

Copyright Spring 2002
by

Christoforos Kozyrakis

Abstract

Scalable Vector Media-processors
for Embedded Systems

by

Christoforos Kozyrakis
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David A. Patterson, Chair

Over the past twenty years, processor designers have concentrated on superscalar and VLIW
architectures that exploit the instruction-level parallelism (ILP) available in engineering applications
for workstation systems. Recently, however, the focus in computing has shifted from engineering
to multimedia applications and from workstations to embedded systems. In this new computing
environment, the performance, energy consumption, and development cost of ILP processors renders
them ineffective despite their theoretical generality.

This thesis focuses on the development of efficient architectures for embedded multimedia
systems. We argue that it is possible to design processors that deliver high performance, have
low energy consumption, and are simple to implement. The basis for the argument is the ability
of vector architectures to exploit efficiently the data-level parallelism in multimedia applications.
Furthermore, the increasing density of CMOS chips enables the design of cost-effective, on-chip,
memory systems that can support the high bandwidth necessary for a vector processor.

To test our hypothesis, we present VIRAM, a vector architecture for multimedia process-
ing. We demonstrate that the vector instructions in VIRAM can capture the data-level parallelism
in multimedia tasks and lead to smaller code size than RISC, CISC, and VLIW architectures. We
also describe two scalable microarchitectures for vector media-processors: VIRAM-1 and CODE.
VIRAM-1 integrates a simple, yet highly parallel, vector processor with an embedded DRAM mem-
ory system in a prototype chip with 120 million transistors. CODE uses a composite and decoupled
organization for the vector processor in order to simplify the vector register file design, tolerate high
memory latency, and allow for precise exceptions support. Both microarchitectures provide up to 10
times higher performance than alternative approaches without using out-of-order or wide instruction
issue techniques that exacerbate energy consumption and design complexity.

i

To my parents,

Litsa and Manolis,

for their unconditional love and support.

Στoυς γoνεις µoυ,

Λιτσα και Mανωλη,

για την απεριoριστη αγαπη και στηριξη τoυς.

ii

Contents

List of Figures v

List of Tables viii

1 Introduction 1

2 Background and Motivation 4
2.1 Applications, Systems, and Technology Trends . 4

2.1.1 Multimedia Applications . 4
2.1.2 Embedded Systems . 5
2.1.3 Technology Constraints . 6

2.2 The Case against Superscalar and VLIW Processors for Embedded Multimedia Pro-
cessing . 6

2.3 Research Goals . 8

3 Multimedia Benchmarks 10
3.1 The EEMBC Benchmark Suite . 10
3.2 Benchmark Description . 12

3.2.1 Consumer Benchmarks . 12
3.2.2 Telecommunications Benchmarks . 13

3.3 Discussion . 14
3.4 Related Work . 15
3.5 Summary . 16

4 Vector Instruction Set Architecture for Multimedia 17
4.1 Introduction to Vector Instruction Set Architectures 17
4.2 Vector Architecture Enhancements for Multimedia 20

4.2.1 Support for Narrow Data Types . 20
4.2.2 Support for Fixed-point Arithmetic . 21
4.2.3 Support for Element Permutations . 22
4.2.4 Support for Conditional Execution . 23

4.3 Vector Architecture Enhancements for General Purpose Systems 24
4.3.1 Support for Virtual Memory . 25
4.3.2 Support for Arithmetic Exceptions . 25
4.3.3 Support for Context Switching . 26

4.4 The VIRAM Instruction Set Extension for MIPS . 26
4.5 Instruction Level Analysis of Multimedia Benchmarks 29

4.5.1 Benchmark Vectorization . 29
4.5.2 Dynamic Instruction Set Use . 30
4.5.3 Code Size . 32

iii

4.5.4 Basic Block Size . 34
4.5.5 Comparison to SIMD Extensions . 35

4.6 Evaluation of the VIRAM ISA Decisions . 36
4.7 Related Work . 37
4.8 Summary . 38

5 The Microarchitecture of the VIRAM-1 Processor 39
5.1 Project Background . 39
5.2 The VIRAM-1 Organization . 40

5.2.1 Scalar Core Organization . 40
5.2.2 Vector Coprocessor Organization . 41
5.2.3 Vector Pipeline . 42
5.2.4 Chaining Control . 43
5.2.5 Memory System and IO . 43
5.2.6 System Support . 44

5.3 The VIRAM-1 Implementation . 45
5.3.1 Scalable Design Using Vector Lanes . 45
5.3.2 Design Statistics . 46
5.3.3 Design Methodology . 47

5.4 Performance Evaluation . 48
5.4.1 Performance of Compiled Code . 49
5.4.2 Performance Comparison . 50
5.4.3 Performance Scaling . 57

5.5 Lessons from VIRAM-1 . 58

6 A New Vector Microarchitecture for Multimedia Execution 60
6.1 Basic Design Approach . 60

6.1.1 Composite Vector Organization . 60
6.1.2 Decoupled Execution . 61

6.2 Microarchitecture Description . 62
6.2.1 Vector Core Organization . 63
6.2.2 Communication Network . 63
6.2.3 Vector Issue Logic . 65

6.3 Issue Policies and Execution Control . 67
6.3.1 Issue Policies . 67
6.3.2 Vector Chaining . 68
6.3.3 Execution Example . 68

6.4 Multi-lane Implementation of Composite Organizations 70
6.5 CODE vs. VIRAM-1 . 71

6.5.1 Centralized vs. Distributed Vector Register File 71
6.5.2 Decoupling vs. Delayed Pipeline . 73

6.6 CODE vs. Out-of-Order Processors . 74
6.7 Microarchitecture Tuning . 76

6.7.1 Core Selection Policy . 77
6.7.2 Register Replacement Policy . 78
6.7.3 Number of Local Vector Registers . 79

6.8 Related Work . 80
6.8.1 Composite Processors . 80
6.8.2 Decoupled Processors . 81

6.9 Summary . 81

iv

7 Precise Virtual Memory Exceptions for a Vector Architecture 82
7.1 The Challenges of Precise Exceptions . 83
7.2 Vector Architecture Support for Precise Virtual Memory Exceptions 84
7.3 Precise Virtual Memory Exceptions in CODE . 85

7.3.1 Hardware Support . 85
7.3.2 Implications to Performance . 87

7.4 Evaluation of Performance Impact . 87
7.5 Related Work . 91
7.6 Summary . 92

8 Embedded Memory System Architecture 93
8.1 Memory System Background . 93
8.2 Embedded DRAM Technology . 95
8.3 Memory System Design Space for Embedded DRAM 97

8.3.1 Memory Banks and Sub-banks . 98
8.3.2 Basic Bank Configuration . 100
8.3.3 Caching in the DRAM Memory System . 100
8.3.4 Address Interleaving . 102
8.3.5 Memory to Processor Interconnect . 103

8.4 Memory System Evaluation . 104
8.4.1 Effect of Memory Latency . 104
8.4.2 Number of DRAM Banks and Sub-banks . 107

8.5 Related Work . 110
8.6 Summary . 110

9 Performance and Scalability Analysis 112
9.1 CODE vs. VIRAM-1 . 112
9.2 The Impact of Communication Network Bandwidth 116
9.3 Scaling CODE with Cores and Lanes . 119

9.3.1 Consumer Benchmarks . 121
9.3.2 Telecommunications Benchmarks . 121
9.3.3 Discussion . 123

9.4 Summary . 124

10 Conclusions 125

Bibliography 127

v

List of Figures

2.1 The evolution of the number of transistors and the clock frequency across six gener-
ations of x86 microprocessors by Intel. 7

2.2 The evolution of the integer performance and the power consumption across six gen-
erations of x86 microprocessors by Intel. 8

4.1 The difference between scalar and vector instructions. 18
4.2 The multiply-add model for a vector architecture for multimedia 21
4.3 An add reduction of a vector with eight elements using the vhalf permutation in-

struction. 23
4.4 Example use of the vhalfup and vhalfdn permutation instructions. 24
4.5 The architecture state in the VIRAM instruction set. 27

5.1 The block diagram of the VIRAM-1 vector processor. 41
5.2 The simple and delayed pipeline models for a vector processor. 42
5.3 The vector datapath and register file resources of VIRAM-1 organized in four vector

lanes. 45
5.4 The floorplan of the VIRAM-1 processor. 47
5.5 The performance speedup for VIRAM-1 after manually tuning the basic kernels of

each benchmark in assembly. 50
5.6 Comparison of the composite scores for the consumer and telecommunications cate-

gories in the EEMBC suite. 52
5.7 Detailed performance comparison between VIRAM-1 and four embedded processors

for the consumer benchmarks. 53
5.8 Detailed performance comparison between VIRAM-1 and five embedded processors

for the telecommunications benchmarks. 54
5.9 Normalized performance comparison between VIRAM-1 and four embedded proces-

sors for the consumer benchmarks. 55
5.10 Normalized performance comparison between VIRAM-1 and five embedded processors

for the telecommunications benchmarks. 56
5.11 The speedup of multi-lane implementations of the VIRAM-1 microarchitecture over

a processor with a single lane. 57
5.12 The composite scores for the consumer and telecommunications benchmarks for VIRAM-

1 as a function of the number of lanes. 58

6.1 The block diagram of the CODE microarchitecture. 62
6.2 The internal organization of the three classes of vector cores: execution, load-store,

and state core. 64
6.3 The control data structures in VIL. 66
6.4 Two execution cases for a vector add instruction. 69

vi

6.5 An implementation of the CODE microarchitecture with four vector lanes. 70
6.6 The two scaling dimensions of the CODE microarchitecture. 71
6.7 The register file area, access latency, and energy consumption for an element access

as a function of the number of functional units in VIRAM-1 and CODE. 73
6.8 The total energy consumed by a vector instruction for reading, writing, and transfer-

ring elements between the register file(s) and the functional unit as a function of the
number of functional units. 74

6.9 The minimum number of functional units for which the distributed register file of
CODE leads to lower energy consumption per instruction for accessing register operands
than the centralized register file organization in VIRAM-1. 75

6.10 The execution of a five instructions on the delayed and decoupled pipelines. 76
6.11 The average number of inter-core register transfers per vector instruction for the three

core selection policies. 77
6.12 The speedup of the multi-core CODE configuration over the reference design for the

three core selection policies. 78
6.13 The average number of inter-core register transfers per vector instruction for the three

register replacement policies. 79
6.14 The average number of inter-core register transfers per vector instruction as a function

of the number of local vector registers per core. 80

7.1 The data structures for implementing precise virtual memory exceptions in CODE. . 86
7.2 The performance loss due to hardware support for precise virtual memory exceptions

in CODE. 88
7.3 The performance loss due to hardware support for precise exceptions for both virtual

memory and arithmetic faults in vector instructions. 90

8.1 The processor-memory performance gap. 94
8.2 The evolution of the cell area, random access latency, and maximum bandwidth for

embedded DRAM technology. 97
8.3 The block diagram of an embedded DRAM bank with multiple sub-banks. 99
8.4 The block diagram of a DRAM sub-bank with four row buffers. 101
8.5 Four simple address interleaving schemes for an embedded DRAM memory system. . 102
8.6 The effect of memory latency on the execution time of the consumer benchmarks on

CODE. 105
8.7 The effect of memory latency on the execution time of the telecommunications bench-

marks on CODE. 106
8.8 The average memory latency for an element access in the consumer benchmarks as a

function of the number of DRAM banks and sub-banks per bank. 108
8.9 The average memory latency for an element access in the telecommunications bench-

marks as a function of the number of DRAM banks and sub-banks per bank. 109

9.1 The performance of CODE and VIRAM-1 for the consumer benchmarks as a function
of the number of lanes. 114

9.2 The performance of CODE and VIRAM-1 for the telecommunications benchmarks as
a function of the number of lanes. 115

9.3 The composite scores for the consumer and telecommunications benchmarks for VIRAM-
1 and CODE as a function of the number of lanes. 116

9.4 The performance of CODE for the consumer benchmarks as a function of the band-
width available in the inter-core communication network. 117

9.5 The performance of CODE for the telecommunications benchmarks as a function of
the bandwidth available in the inter-core communication network. 118

vii

9.6 The performance of CODE for the consumer benchmarks as a function of the number
of vector cores and lanes. 120

9.7 The performance of CODE for the telecommunications benchmarks as a function of
the number of vector cores and lanes. 122

9.8 The composite scores for CODE for the consumer and telecommunications bench-
marks as a function of the number of vector cores and vector lanes. 123

viii

List of Tables

3.1 The five categories in the first release of the EEMBC suite and the benchmarks they
include. 11

3.2 The characteristics of the EEMBC consumer benchmarks on the NEC VR5000 processor. 13
3.3 The characteristics of the EEMBC telecommunications benchmarks on the NEC

VR5000 processor. 14

4.1 The three addressing modes for vector memory accesses. 19
4.2 The VIRAM instruction set summary. 28
4.3 The dynamic instruction set counts for the multimedia benchmarks. 30
4.4 The distribution of vector operations for the multimedia benchmarks. 31
4.5 The distribution of strides for the multimedia benchmarks. 32
4.6 Static code size comparison for the consumer benchmarks. 33
4.7 Static code size comparison for the telecommunications benchmarks. 34
4.8 The average basic block size for the multimedia benchmarks in VIRAM. 35

5.1 The chip statistics for VIRAM-1. 46
5.2 The area breakdown for VIRAM-1. 48
5.3 The design methodology statistics for VIRAM-1. 49
5.4 The characteristics of the six embedded processors used for performance comparisons

with VIRAM-1. 51

6.1 The common types of execution and load-store cores. 65

7.1 The CODE configuration used for evaluating the performance impact of precise virtual
memory exception support. 89

8.1 The basic parameters of the IBM SA27E CMOS process for embedded DRAM tech-
nology. 96

9.1 The CODE configuration for comparison with VIRAM-1. 113

ix

Acknowledgements

Research in computer architecture requires a team effort. During the course of my studies,
I was fortunate to work with a number of great people that influenced the direction and the quality
of my work.

First, I would like to thank Dave Patterson, my thesis advisor, for his overall guidance,
support, and friendship. He helped me develop a taste for research and encouraged me to pursue the
problems and ideas I found most intriguing. Moreover, he showed me the importance of a balanced
professional and personal life. I also enjoyed our frequent conversations on soccer, a rare delight for
a European living in California.

I am especially grateful to Manolis Katevenis, my undergraduate advisor at the University
of Crete, for initiating me into computer architecture. His enthusiastic teaching and good advice
motivated me to pursue a graduate degree in the first place. Krste Asanovic, now a professor
at MIT, introduced me to vector architectures and their potential with multimedia applications.
Our numerous discussions had a strong influence on the microarchitecture and design of VIRAM-1.
I also want to thank professors Katherine Yelick, John Wawrzynek, John Kubiatowicz, Christos
Papadimitriou, and John Chuang at U.C. Berkeley for their help and feedback at various stages of
my studies.

I am indebted to Sam Williams and Joe Gebis, my project partners and officemates. With-
out their persistence and selflessness, the VIRAM-1 prototype chip would not have been possible.
They also had to deal with my stubborn character and Greek accent on a daily basis. I hope they
enjoyed our long arguments on social, political, and economical issues as much as I did. By the way,
we never agreed on anything. My gratitude to all the graduate students and staff involved with
hardware or software development for the IRAM project: David Martin, Iakovos Mavroidis, Ioannis
Mavroidis, Hiro Hamasaki, Brian Gaeke, Dave Judd, Rich Fromm, and Mani Narayanan. I also
want to acknowledge the help from Paul Gutwin, Bill Tetzlaff, and Subu Iyer from IBM, as well as
from Darren Jones from MIPS Technologies.

My favorite part of graduate school was the open-ended discussions on research and educa-
tional issues that I had with numerous people in the EECS department. John Hauser, Tim Callahan,
Kees Visser, Jim Beck, David Oppenheimer, Eylon Caspi, Joe Yeh, and Kim Keeton facilitated sev-
eral insightful conversations and should be blamed for all the time I wasted talking in the corridors
of Soda Hall instead of working.

Special thanks to Iason Vasiliou for being a truly good friend during my six years in
Berkeley. He often had to force me to have some fun and forget about the hard work and stress of
graduate school. Maria Moreno, Kostas Adam, Nikos Chronis, Stelios Perissakis, Manolis Terrovitis,
Regina Soufli, Kristina Varga, Pamela Erickson, Amanda Cramp, and all the players of the Tzatziki
Turbos, the soccer team of Greek students in U.C. Berkeley, have also been great friends and good
companions as well. As for the last year of my studies, it was Vicky Kalivitis that brought me the
peace of mind necessary to conclude my work.

Finally, I want to thank my parents, Litsa and Manolis, and my two beautiful sisters, Maria
and Natasa, for more than I can say with words.

The IRAM project at U.C. Berkeley was supported in part by the Advanced Research
Projects Agency of the Department of Defense under contract DABT63-96-C-0056, by the California
State MICRO Program, and by the Department of Energy. IBM, MIPS Technologies, Cray Inc.,
and Avanti Corp. have made significant software or hardware contributions to the IRAM project.
This thesis was also supported by a U.C. Regents fellowship (1996-97) and an IBM Research Ph.D.
fellowship (2001-02).

1

Chapter 1

Introduction

“There is at the back of every artist’s mind,

a pattern or type of architecture.”

Gilbert Chesterton

Over the past twenty years, microprocessor designers have concentrated on accelerating
engineering applications on workstation systems. This approach has lead to development of the
superscalar and VLIW architectures for exploiting the instruction-level parallelism (ILP) available
in applications with complex control flow. ILP processors have taken advantage of the exponen-
tial improvements in the density and speed of circuits in semiconductor chips in order to deliver
exponentially increasing performance.

Recently, however, the focus in computing has shifted from engineering to multimedia
applications and from workstations to embedded systems. In this new computing environment, the
energy consumption and design complexity of ILP architectures renders them ineffective, despite
their theoretical generality and flexibility. Moreover, it is becoming gradually more difficult for
ILP processors to translate improvements in circuits technology to proportional gains in application
performance.

This thesis focuses on the development of efficient microprocessors for embedded multi-
media systems. We argue that it is possible to design processors that deliver high performance for
multimedia tasks, have low energy consumption, and are simple to implement and scale with modern
CMOS technology. The basis for the argument is the existence of data-level parallelism in multi-
media applications and the ability to exploit it efficiently with a vector architecture. Furthermore,
the increasing density of semiconductor dies enables the design of cost-effective, on-chip, memory
systems that can support the high bandwidth necessary for a vector processor.

Thesis Contributions

The main contributions of this dissertation are the following:

• We introduce the VIRAM vector instruction set architecture (ISA) for embedded multimedia
systems. The vector instructions in the VIRAM ISA can express the data-level parallelism in
multimedia application in an explicit and compact manner.

• We present the microarchitecture, design, and evaluation of the VIRAM-1 media-processor.
VIRAM-1 integrates a simple, yet highly parallel, vector processor with an embedded DRAM
memory system. It demonstrates that a vector processor can provide high performance for
multimedia tasks, at low energy consumption, and low design complexity.

2

• We propose the CODE vector microarchitecture for the VIRAM ISA that combines composite
organization with decoupled execution. The simplified vector register file and the ability to
tolerate high memory latency allow CODE to extend the performance and energy advantages
of VIRAM-1 across a larger design space. It can also support precise exceptions with a minimal
impact on performance.

• We demonstrate that embedded DRAM is a suitable technology for the memory system of
vector media-processors. Embedded DRAM provides the high memory bandwidth required by
a vector processor at low energy consumption and moderate access latency.

Thesis Outline

The outline of the rest of this thesis is as follows.
Chapter 2 provides the background and motivation for this work. It discusses the charac-

teristics and requirements of multimedia applications and embedded systems. It also argues that the
superscalar and VLIW architectures for high performance processors are not suitable for embedded
multimedia systems.

Chapter 3 describes the function and characteristics of the EEMBC benchmark suite for
embedded processors. We focus mostly on the consumer and telecommunications benchmarks, which
are representative of multimedia tasks.

Chapter 4 introduces the VIRAM vector instruction set. It describes a set of enhance-
ments to traditional vector architectures that provide support for multimedia processing and virtual
memory. We demonstrate that the vector instructions in VIRAM can capture more than 90% of
the dynamic instruction count of the EEMBC benchmarks. We also show that the use of vec-
tor instructions leads to significant advantages in terms of code size over CISC, RISC, and VLIW
architectures.

Chapter 5 presents and evaluates the VIRAM-1 prototype microprocessor. We describe
the VIRAM-1 pipeline structure and how it interacts with embedded DRAM. We also present its
scalable design based on the concept of vector lanes. We demonstrate that VIRAM-1 outperforms
superscalar and VLIW processors by at least a factor of 2, despite its low clock frequency due to its
focus on low energy consumption.

Chapter 6 introduces the CODE microarchitecture for vector media-processors. We discuss
its two basic elements, composite organization and decoupled execution, and how they allow for
performance, energy, and complexity improvements over VIRAM-1. We describe the issue logic and
operation control in CODE and discuss its implementation based on two orthogonal concepts: vector
cores and vector lanes. Finally, we use the EEMBC benchmarks to derive the optimal value for the
key parameters of the CODE issue logic.

Chapter 7 tackles the problem of precise virtual memory exceptions in vector microproces-
sors. We introduce an alternative definition for precise exceptions for vector instructions that places
relaxed requirements on processor implementations. We also describe a set of minor modifications
to the issue logic of CODE that implements precise exceptions. We demonstrate that the support
for precise virtual memory exceptions has negligible impact on performance for the multimedia
benchmarks.

Chapter 8 examines the use of embedded DRAM for the memory system of vector media-
processors. We introduce the basics of embedded DRAM technology and discuss the impact on
performance and energy consumption of various design parameters such as the number of banks and
sub-banks, the address interleaving scheme, and the type of processor to memory interconnect. We
demonstrate that the CODE microarchitecture works well with embedded DRAM as it can tolerate
high memory latency if sufficient bandwidth is available. We also show that the use of multiple banks
and sub-banks in the memory system is crucial, especially for applications with non sequential access
streams.

3

Chapter 9 provides a detailed performance evaluation of CODE for the EEMBC bench-
marks. Assuming equal die area, CODE outperforms VIRAM-1 by 26% for the consumer bench-
marks and 12% for telecommunications benchmarks. We also demonstrate that CODE can exploit
additional hardware resources by operating on independent vector instructions on multiple vector
cores or by executing several element operations for each vector instruction in parallel on multiple
vector lanes.

Finally, Chapter 10 concludes the thesis and suggests directions for future work.

4

Chapter 2

Background and Motivation

“One’s mind has a way of making itself up in the background,

and it suddenly becomes clear what one means to do.”

Arthur Benson

The main drivers for microprocessor technology have traditionally been workstation and
server systems running engineering applications. The requirements of such systems have lead to the
development of the superscalar and VLIW architectures that exploit the instruction-level parallelism
(ILP) available in applications with complex control flow. In addition, the exponential growth in
CMOS semiconductor technology has allowed the design of faster, larger, and increasingly compli-
cated processors. In the last few years, however, we have experienced significant changes in the
requirements and underlying assumptions for general-purpose microprocessors. In this chapter, we
discuss the applications, systems, and technology trends that set the background and motivate the
research work in this thesis.

Section 2.1 presents the requirements of two emerging trends in computing: multimedia ap-
plications and embedded systems. It also discusses the semiconductor technology and manufacturing
challenges that threaten to limit the potential of future processor designs. Section 2.2 argues that
superscalar and VLIW processors do not match the requirements of embedded multimedia in deep
sub-micron CMOS technology. Finally, Section 2.3 introduces the basic requirements for efficient
microprocessors for embedded multimedia systems and sets the research goals for this thesis.

2.1 Applications, Systems, and Technology Trends

To develop successful microprocessor architectures, we must examine carefully the require-
ments of the applications that the processors will run and the characteristics of the computer systems
that the processors will go into. In addition, we should keep in mind the capabilities and, most im-
portant, the limitations of the underlying manufacturing technology for semiconductor chips.

2.1.1 Multimedia Applications

The continuing improvements in circuits technology and recent algorithmic innovations
have enabled the use of real-time, media data such as video, sound, and animation. Applications
with multimedia features such as 3-D graphics, video or visual imaging, speech or handwriting
recognition, and high fidelity music, are already among the most popular and consume the majority
of processing cycles on desktop systems. They have the ability to greatly improve the usability,
quality, productivity, and enjoyment of computer systems. They also expand the applicability of
computer-based products from the office environment to every aspect of our lives. Hence, it is

5

common knowledge that the influence of multimedia applications on computing will only increase
in the future [BG97, Gro98, Dal98, Kil98].

Multimedia applications exhibit a set of distinguishing characteristics [DD97]:

• Data-level parallelism is inherent in multimedia programs as they typically repeat a small set
of operations over a sequence of input pixels, video frames, or sound samples. This form of
parallelism is explicit in the algorithmic description of multimedia functions.

• They operate mostly on narrow data types, as 8-bit or 16-bit numbers are sufficient to encode
the limited input range of human vision and hearing.

• They require real-time response guarantees. Most multimedia applications rely on real-time
qualitative perception. Hence, the sustained performance under worst-case conditions is much
more important than the peak performance or the accuracy of arithmetic results. With video
decoding, for example, the rate of 30 frames per second defines the minimum acceptable and
maximum required performance level. It is preferable to produce a few erroneous pixels per
frame rather than drop bellow the required frame rate at any point in time.

• Due to the streaming nature of multimedia applications, their input data exhibit limited tem-
poral locality.

In contrast, most engineering workloads use 64-bit numbers for maximum arithmetic ac-
curacy and demonstrate good temporal and spatial locality on their data accesses. Their complex
control flow includes short data dependence distances that limit the potential for extracting data-
level parallelism. Since the goal with engineering applications is minimum time to completion, they
place emphasis on peak performance over real-time response guarantees.

The apparent differences in the characteristics of engineering and multimedia applications
indicate that a processor optimized for the former is unlikely to be efficient for the latter.

2.1.2 Embedded Systems

In parallel with the appearance of multimedia applications, the focus in systems develop-
ment has been switching from the desktop to the embedded domain. Embedded systems include
portable devices such as personal digital assistants (PDAs), digital cameras, palmtop computers,
and cellular phones, as well as entertainment systems such as video game consoles, set-top boxes,
and DVD players [Lew98]. In the last few years, there has been a rapid growth in the variety and
functionality of such embedded consumer products, driven mostly by their huge market potential.
Even though one or two desktop computers are sufficient for most households, a single person may
own and use several embedded devices.

The characteristics and requirements of embedded systems are considerably different from
those of desktop machines:

• They require low energy consumption. Portable devices must operate for a long time using
conventional battery technology. In addition, electronics for embedded devices are limited to
cheap cooling systems and packages.

• Embedded systems store application code in some form of non-volatile memory like ROM or
Flash because hard disks are too expensive for most consumer products. Compact code size
lowers the system cost because the application can use a smaller ROM or Flash chip.

• Due to the consumer nature of embedded products, they call for low development and manu-
facturing cost. Hence, the electronic components for embedded systems must be easy to design
in the first place and easy to scale for follow-up products.

6

• To reduce the overall size for embedded devices, it is desirable to use highly integrated chips
that incorporate a large number of the processing, memory, and IO components on a single
die.

As desktop and workstation systems become more cost-oriented, some of the requirements
of embedded systems become more general. However, the conventional wisdom has been that power
consumption is a secondary issue for desktop systems. Code size has also been irrelevant due to the
availability of hard disks in PCs and workstations and the success of instruction caches with the
code for engineering applications.

2.1.3 Technology Constraints

Until recently, it was widely believed that the continuing validity of Moore’s law [Moo65]
meant that we can proceed with the design of larger and increasingly complex processors without sig-
nificant concerns about the underlying technology. Even though the capacity of semiconductor chips
still grows at the exponential rate predicted in Moore’s law, there are certain limitations that could
prohibit the conversion of increased capacity to increased performance in future microprocessors.

The first technology constraint is the exponentially increasing performance gap between
microprocessors and DRAM memory [HP02]. While processor chips have been optimized for perfor-
mance, DRAM chips have been targeting maximum capacity and minimum cost. The consequence
is that main memory accesses are becoming increasingly slower from the processor’s perspective.
No matter how fast the processor can execute arithmetic operations or how many operations it can
execute in parallel, it cannot deliver a high level of sustained performance if it cannot access fast
the input and output data for the applications [WM95]. We provide a further discussion of the
processor-memory performance gap in Chapter 8.

An additional problem of semiconductor technology is the latency of long, on-chip wires.
As the feature size of CMOS processes shrinks, transistors and logic gates become faster. However,
as we also increase the amount of hardware resources in microprocessor chips, the propagation la-
tency of long wires that implement cross-chip communication remains constant [HMH01]. Therefore,
the relative cost of computation versus communication decreases with every generation of CMOS
technology and global interconnect patterns within a processor chip are becoming progressively more
expensive. The consequence for processor architectures that rely on global, low latency communi-
cation of their subcomponents will be either slower clock frequency or repeated stalls during global
communication events.

The final technology constraint refers to processor development costs. As the capacity and
functional complexity of microprocessors increase at exponential rates, the same holds for their design
and verification complexity. For complicated architectures with limited component modularity,
the design and verification costs and cycles can easily exceed the manufacturing costs and cycles
[AEJ+02]. Complicated designs require large development teams that are expensive assemble and
difficult to manage. They also place a heavy burden on the CAD tools for automated design and
the equipment for testing semiconductor products.

2.2 The Case against Superscalar and VLIW Processors for

Embedded Multimedia Processing

The prevailing approaches to high performance processors have been the superscalar and
VLIW architectures that exploit the instruction-level parallelism available in applications with wide-
issue organizations [SS95, Fis83]. These architectures have delivered exponential growth in perfor-
mance over the past two decades. Many expect that the performance of ILP processors will keep
improving at the current rate indefinitely and that superscalar and VLIW designs can provide an

7

Transistor Count

0.1

1

10

100

80386 80486 Pentium PentiumII PentiumIII Pentium4

M
ill

io
n

s
o

f
T

ra
n

si
st

o
rs

Clock Frequency

10

100

1000

10000

80386 80486 Pentium PentiumII PentiumIII Pentium4

M
H

z

Figure 2.1: The evolution of the number of transistors and the clock frequency across six generations
of x86 microprocessor by Intel. Both graphs use a logarithmic scale for the y axis. The four Pentium
processors use superscalar organizations and are able to issue and execute more than one instruction
per clock cycle.

efficient computing platform for all applications and all systems. In this section, we argue that ILP
processors are running out of steam. They are increasingly inefficient even for the engineering appli-
cations they were developed for. Moreover, they are poor matches to the requirements of multimedia
applications running on embedded systems.

Figure 2.1 presents the evolution of the number of transistors and the clock frequency in
six generations of superscalar microprocessors from Intel. As the feature size for CMOS technology
has shrunk, we have been able to increase the number of transistors in microprocessor chips by a
factor of 2.8 per generation. The additional hardware resources enabled the increase in the number
of instructions issued and executed per cycle by using additional functional units, larger caches,
and larger branch predictors. At the same time, faster gates, better circuit techniques, and deeper
pipelines have allowed clock frequency to increase by a factor of 2.2 per generation. Each generation
can execute basic operations twice as fast as the previous one. Therefore, one would expect an
overall performance improvement for superscalar processors by a factor of approximately 6.1 (2.8 x
2.2) per generation.

Figure 2.2 presents the performance of the same microprocessors as measured with the
integer SPEC benchmarks for engineering workloads. Sustained performance has increased by nearly
300 times, which implies an improvement factor of 3.1 per generation. This is half of the expected
rate. In addition, the rate of improvement has dropped to approximately 2.0 for the three most
recent microarchitectures (Pentium II to Pentium 4). Figure 2.2 also presents the evolution of power
consumption. Despite the feature shrinks and the continuous reductions in the power supply voltage,
power dissipation has been doubling with each generation and is approaching fast the dissipation
limit for air-cooled systems.

The conclusion from Figures 2.1 and 2.2 is that superscalar processors are becoming in-
creasingly ineffective with turning increased circuits capacity and high clock frequency into sustained
performance, even for the engineering workloads they have been optimized for. As the amount of
instruction-level parallelism in applications is inherently limited [Wal91a] and difficult to extract
[AHBK00], scaling superscalar designs requires expensive investments in die area, circuits design,
and engineering effort for diminishing returns in performance. The same holds for VLIW processors
since they also rely on instruction-level parallelism.

The picture for ILP processor becomes even worse if we consider the requirements of mul-
timedia applications. Superscalar processors use a strictly sequential instruction stream that hides
any data-level or instruction-level parallelism. In order to discover any parallelism and exploit it
for higher performance, the hardware must use complicated issue logic that is wasteful in terms of

8

Integer Performance

0.1

1

10

100

80386 80486 Pentium PentiumII PentiumIII Pentium4

S
p

ec
In

t

Power Consumption

1

10

100

80386 80486 Pentium PentiumII PentiumIII Pentium4

W
at

ts

Figure 2.2: The evolution of integer performance and the power consumption across six generations of
x86 microprocessors by Intel. Both graphs use a logarithmic scale for the y axis. Integer performance
refers to the score for the integer benchmarks in the SPEC suite.

both hardware resources and energy consumption. VLIW processors can capture some amount of
data-level parallelism in the long instructions at the cost of increased code size (see Chapter 4).

Both superscalar and VLIW processors typically provide limited support for narrow data
types. They also use hierarchies of caches in order to bridge the processor-memory performance gap.
However, caches rely on the premise of temporal locality, which is not available in the streaming data
for multimedia applications. Superscalar and VLIW processors rely on probabilistic techniques such
as caching, hardware or software speculation, and out-of-order execution. Such techniques make
it difficult to provide guarantees for real-time response, as there is a large impact on performance
associated with cache misses and incorrect speculation.

ILP processors are poor matches for embedded systems as well. Superscalar processors
consume excessive amounts of energy to discover which instructions in a sequential stream are
independent and can execute in parallel. VLIW processors, on the other hand, consume energy
on fetching and decoding instructions from bloated executables. They both waste energy on cache
references for multimedia applications with limited temporal locality.

ILP processors rely on global communication patterns for instruction issue and result for-
warding. In most cases, propagation of critical signals across the chip must occur in a single clock
cycle. This property makes superscalar and VLIW designs vulnerable to the latency problem of long
wires in CMOS technology.

Finally, high performance designs for superscalar and VLIW processor suffer from increased
design complexity. The design nonrecurring expenses (NRE) for such microprocessors routinely
reach the tens of millions of dollars [AEJ+02]. In addition, their design and verification cycles are
measured in years despite the use of hundreds of engineers. For reference, the manufacturing NRE
for mask production and probe-card design are just reaching the $1 million mark and manufacturing
cycle times for microprocessor chips are measured in weeks. The trend of increasing complexity is
expected to continue for superscalar and VLIW designs as they implement wider and increasingly
complicated control functions.

2.3 Research Goals

Given the applications, systems, and technology trends, we consider the following as the
fundamental characteristics for an efficient processor architecture for embedded multimedia systems:

• It expresses the data-level parallelism in multimedia applications in an explicit and com-
pact way.

9

• It exploits data-level parallelism to deliver high performance at low energy consumption.

• It provides sufficient performance under worst-case conditions in order to simplify guarantees
for real-time response.

• It leads to modular hardware implementations with mostly local interconnect that are
easy to design, verify, and scale.

• It is easy to program efficiently using high-level languages and compilers.

The above features define the basic research goals for the architecture and microarchitecture
techniques presented in the following chapters.

10

Chapter 3

Multimedia Benchmarks

“In theory, there is no difference between theory and practice.

But, in practice, there is.”

Jan van de Snepscheut

The development and evaluation of a new processor microarchitecture is impossible with-
out measuring its efficiency for a set of applications. Ideally, we would like to evaluate the processor
using full-size, end-user applications running within the environment of a complete product. Such
an evaluation is rarely possible however, especially during the development stages of a new microar-
chitecture. The chip-level simulators used to explore, tune, and verify a proposed design are too
slow to allow experimentation with complete applications running on top of an operating system.
Furthermore, we typically design new processors for the next generation of user software, hence the
exact characteristics of the applications are not always available during development. Therefore,
processor designers evaluate and compare processors using a benchmark suite: a collection of short
programs that represent the applications of interest and stress the key processor features necessary
to run them efficiently. This chapter describes the benchmarks used in this thesis to develop and
evaluate a set of microarchitectures for vector media-processors for embedded systems.

Section 3.1 introduces the EEMBC benchmark suite for embedded processors. Section 3.2
describes the kernels included in the consumer and telecommunications categories of the EEMBC
suite, which we use in the rest of this thesis. Section 3.3 discusses some basic characteristics of the
EEMBC benchmarks, their advantages and shortcomings. Finally, Section 3.4 presents related work
in the area of benchmarking embedded and multimedia processor architectures.

3.1 The EEMBC Benchmark Suite

The EEMBC (EDN Embedded Microprocessor Benchmark Consortium) suite is a collection
of benchmarks for the evaluation of microprocessors for a wide range of embedded applications
[Hal99b]. Table 3.1 summarizes the benchmarks included in the suite. The goal of EEMBC is to
become the “yardstick” for embedded processors in a similar way that the SPEC [Hen00] and TPC
[PF00] suites are the standard benchmarks for desktop and server processors respectively.

The field of embedded processors is extremely diverse as it includes anything from 8-bit and
16-bit, low-cost microcontrollers to powerful, 32-bit and 64-bit microprocessors. There are more than
ten instruction sets in use with embedded processors today and, even though some are more popular
than the rest, there is no dominant approach. Furthermore, there is no dominant microarchitecture.
One can find an embedded chip that implements any possible hardware technique: RISC, CISC,
VLIW, SIMD, and MIMD [HP02]. The fundamental reason for the diversity is the wide assortment
of applications for embedded processors, ranging from industrial control systems to cellular phones

11

Consumer Category
RGB to CMYK Conversion RGB to YIQ Conversion
High-pass Gray-scale Filter JPEG Compress
JPEG Decompress

Telecommunications Category
Autocorrelation Convolutional Encoder
Bit Allocation Fast Fourier Transform
Viterbi Decoder

Networking Category
Dijkstra Routing Packet Flow
Patricia Table Lookup

Office Automation Category
Bezier Curve Calculation Dithering
Image Rotation

Automotive & Industrial Category
Table Lookup & Interpolation Tooth to Spark
Angle to Time Conversion Pulse-width Modulation
Remote Data Request Road-speed Calculation
Infinite Impulse Response Filter Finite Impulse Response Filter
Bit Manipulation Basic Arithmetic
Pointer Chasing Matrix Arithmetic
Cache Buster Inverse Discrete Cosine Transform
Fast Fourier Transform

Table 3.1: The five categories in the first release of the EEMBC suite and the benchmarks they
include. All benchmarks are coded in C. They can execute on a wide range of embedded processors
and microcontrollers. This thesis focuses on the consumer and telecommunications categories.

and digital cameras. Each domain of embedded applications has different requirements in terms of
performance, power consumption, and cost. The high sales volume of embedded products motivates
vendors to develop processors customized to the needs of each specific domain.

To allow for fair comparisons within the diverse space of embedded processors, the EEMBC
suite includes five benchmark categories, one for each major embedded application domain:

• The consumer category includes algorithms used in digital-cameras, set-top-boxes, and per-
sonal digital assistants (PDAs).

• The telecommunications class contains basic kernels from modem, ADSL, and wireless
applications.

• The networking group features workloads from network devices such as switches and routers.

• The office automation category includes functions that represent office machinery such as
printers, fax machines, and word processors.

• The automotive & industrial class contains tasks derived from industrial controllers and
automotive applications such as engine and airbag control.

All benchmarks are coded in standard C and include multiple reference sets of input and output
data.

12

The main metric for the EEMBC suite is execution throughput: the number of times a
processor can repeat a specific benchmark within one second (iterations/second). Higher throughput
scores mean higher performance. EEMBC reports throughput individually for each benchmark. It
also summarizes each category with a composite metric, which is proportional to the geometric mean
of the individual benchmark scores. An additional metric is the static code and static data sizes in
bytes. Naturally, smaller code and data sizes are preferable. The static data size does not include
dynamically allocated memory. However, static memory use is a representative metric for embedded
applications, because embedded programs typically allocate all the necessary buffer space in a static
manner to avoid the overhead of dynamic memory management.

EEMBC allows two modes of measurement. For the “out-of-the-box” mode, the evaluation
reflects the results achieved with straightforward compilation of the original benchmark code. This
mode allows no optimizations other than what the compiler can achieve using various flags. The
“optimized” mode allows modification of the benchmark code, use of intrinsic language extensions
and optimized libraries, data re-ordering or restructuring, even hand-tuning in assembly. Practically,
the only modification not allowed in the optimized mode is changing the underlying algorithm of
the benchmark. To ensure that the optimized or modified versions of each benchmark still produce
correct results, EEMBC requires that the produced outputs are either bit identical or within a
predefined error margin from the provided reference outputs.

3.2 Benchmark Description

For the microarchitectures presented in this thesis, we focus on the consumer and telecom-
munications categories of the EEMBC suite. The two benchmark groups represent the typical
workload of modern media-processors in consumer devices that combine multimedia applications
with high-bandwidth, wired or wireless connectivity.

The following subsections summarize the function and the characteristics of the 10 consumer
and telecommunications benchmarks.

3.2.1 Consumer Benchmarks

The consumer category includes five fixed-point, multimedia benchmarks:

• RGB to CMYK Conversion (Rgb2cmyk): The benchmark converts a digital image to the
CMYK format used by most printers. All three of the RGB components of each input pixel are
necessary to compute the four CMYK components of the output pixel. The benchmark explores
the processor’s ability to perform basic matrix arithmetic and fixed-point or trigonometric
operations.

• RGB to YIQ Conversion (Rgb2yiq): The benchmark converts a digital image to the
YIQ format that complies with NTSC television standards. The output can be used as an
overlay on a standard TV picture. The benchmark applies a special 3x3 matrix to each RGB
pixel. It explores the processor’s ability to perform basic matrix arithmetic and fixed-point or
trigonometric operations.

• High-pass Gray-scale Filter (Filter): The program receives a dark or blurry gray-scale
image and sharpens it with a high-pass filter or smoothens it with a low pass filter. The filters
apply a 3x3 convolutional kernel that requires the values for the eight neighbors of an input
pixel in order to calculate its output value. The benchmark explores the processor’s ability to
perform matrix arithmetic.

• JPEG Compress (Cjpeg): It implements the JPEG standard for “lossy” compression of
digital images [Wal91b]. It first performs a discrete-cosine-transform (DCT) on 8x8 image

13

Benchmark Iterations Code Size Data Size
per second (KBytes) (KBytes)

Rgb2cmyk 95.64 1.8 230.8
Rgb2yiq 41.52 1.6 230.8
Filter 57.51 2.0 77.1
Cjpeg 10.48 58.6 777.9
Djpeg 13.34 58.7 1,042.9

Table 3.2: The characteristics of the EEMBC consumer benchmarks on the NEC VR5000 processor
[Tur98]. The VR5000 is a dual-issue MIPS processor running at 250MHz. Its 32-KByte first-level
instruction and data caches are two-way set associative. In early 2002, the VR5000 is representative
of embedded processors used in high-end consumer products.

blocks. The DCT coefficients are subsequently quantized and compressed using a variable-
length Huffman code.

• JPEG Decompress (Djpeg): It decompresses a JPEG image to retrieve the original RGB
format. It recovers the quantized DCT coefficients from the compressed data and performs
the inverse transformations on the 8x8 blocks. Just like the compression part, this benchmark
explores the processor’s ability to perform pre-loading, handle frequent branches, and execute
arithmetic operations on short vectors.

Table 3.2 presents the execution throughput, code and data sizes of the consumer bench-
marks for a 250MHz, dual-issue MIPS processor for consumer and telecommunications applications.
Most benchmarks have small code size that fits completely in an 8-KByte cache. Even though Cjpeg

and Djpeg have larger code sizes, they result to negligible miss rates with an 8 KByte instruction
cache due to the high degree of locality in their dynamic instruction streams [FWL99]. The data
sizes for the benchmarks are considerably larger as they are proportional to the size of the input
images. Even though there is little temporal locality in the data accesses, there is significant spatial
locality that allows for efficient prefetching.

3.2.2 Telecommunications Benchmarks

The telecommunications category includes five fixed-point benchmarks:

• Autocorrelation (Autocor): This telephony kernel compresses 8-kilosample/second voice
data into a much smaller data stream. It uses autocorrelation to determine the short-term
redundancy of the speech signal, due to the filtering by the vocal tract. The autocorrelation
coefficients are processed with a code-excited linear prediction (CELP) algorithm to find the
filter that closely matches the vocal tract’s transfer function. The benchmark explores the
processor’s ability to handle dot-products.

• Convolutional encoder (Convenc): The benchmark implements a key function for a V.xx
modem. It creates an output data stream with error detection and correction capabilities
using a linear shift register and table look-ups. The program explores the processor’s ability
to perform bit-wise exclusive or operations and table lookups.

• Bit allocation (Bital): This benchmark simulates a key function for asynchronous digital
subscriber line (ADSL). The processor must distribute data into a series of “frequency bins.”
The ADSL modem then modulates and transmits these bins over the telephone line. The
benchmark explores the processor’s ability to progressively spread a stream of data over a
series of buffers using on a “water-level” algorithm.

14

Benchmark Iterations Code Size Data Size
per second (KBytes) (KBytes)

Autocor 206,378 1.1 0.05
Convenc 2,555 1.6 0.05
Bital 11,222 1.5 1.66
Fft 3,656 5.4 3.37
Viterbi 1,038 3.8 3.80

Table 3.3: The characteristics of the EEMBC telecommunications benchmarks on the NEC VR5000
processor [Tur98].

• Fast Fourier transform (Fft): This program performs the fixed-point, fast Fourier trans-
form on 256 complex points for an ADSL application. It converts time domain data into
frequency domain information. The benchmark explores the processor’s ability to perform
complex mathematical and memory access functions.

• Viterbi decoder (Viterbi): The benchmark implements the Viterbi decoder used in modem
and wireless applications [Vit67]. It receives an input packet encoded with an IS-136 1/2 rate
convolutional encoder. It uses a series of add-compare-select (ACS) steps and a back-tracking
stage to recover the original information in the presence of transmission errors. The benchmark
explores the processor’s ability to perform bit-wise operations, comparisons, and table lookups.

Table 3.2 presents the execution throughput, code and data sizes of the telecommunications
benchmarks for a 250MHz, dual-issue MIPS processor for consumer and telecommunications applica-
tions. Both code and data sizes are small. Data references have limited temporal locality but plenty
of spatial locality. The major performance limitation for Viterbi, Bital, and the Convenc is the
existence of dependencies in their output data streams, which can prohibit parallel execution. For
Fft, the bottleneck is typically the complex memory access pattern for the butterfly permutations.

3.3 Discussion

As we already noted in the introduction of this chapter, we use benchmarks to evaluate
microprocessors because of the difficulties associated with using full-size applications during the
development stages of a design or with porting full applications to a large number of competitive
processors. Therefore, any benchmark suite is bound to have some advantages and some basic
shortcomings. It is important for processor designers to keep both in mind in order to correctly
translate the benchmarking results and understand their limitations.

The EEMBC suite is the first real attempt to develop a non-trivial benchmarking method-
ology for embedded processors. Its major advantage is the coverage of a large number of embedded
application domains. It allows designers to focus their attention to the domain(s) in which they
intend to employ their processor without worrying about their benchmark scores in other applica-
tion areas. EEMBC reports results both with a composite metric for each category and individual
scores for each benchmark. The former enables quick comparisons and the latter allows for detailed
studies. The benchmarks in the EEMBC suite are not synthetic. They are directly derived from
real embedded applications and represent their computationally or memory intensive components.
Hence, there is increased confidence that the benchmark results are meaningful. Finally, the EEMBC
benchmarks are small and easy to port, tune, and run across a wide range of embedded platforms,
regardless of the operating system or IO environment.

15

On the other hand, the EEMBC benchmarks are not complete applications. Hence, they
do not capture interference between kernels in the same application or the overhead of the remaining
part of the code. In addition, they cannot evaluate the contribution to performance of system-level
components such as DMA engines, streaming buffers, integrated memory, external memory interface,
interrupt handling logic, and so on. Embedded processors typically include on same die a variety
of memory and IO interfaces and their actual performance can vary significantly depending on the
way the applications use the additional hardware. Furthermore, the energy and power consumption
are not currently included in the EEMBC reports. Even though energy and power consumption
are not as easy to measure or estimate as execution time, they are important metrics for embedded
processors. For several embedded applications, it is the performance to power consumption ratio
that determines the most appropriate processor.

In terms of the results and comparisons presented in this thesis, one should note the fol-
lowing deficiency of the EEMBC suite. The EEMBC procedure for measuring performance specifies
that benchmarks should execute for a large number of times (typically a few hundred) in order to
obtain reliable timing information. However, repeated execution along with the tiny data sets for
several benchmarks allow caches to capture the data sets and the performance results to overlook
the cost of accessing main memory. This situation of warmed-up data caches would not happen
with real embedded applications, where a processor would never decode the same network data
twice and would rarely attempt to compress the same image more than once. The EEMBC mea-
surement procedure gives processors with cache hierarchies an unfair advantage over processors that
implement data prefetching or streaming buffers, the mechanisms most appropriate for handling
streaming multimedia data.

The microarchitectures we present in this thesis do not use caches. They employ ar-
chitecture and microarchitecture techniques that implement prefetching. In contrast, the various
commercial processors we compare against use cache hierarchies and benefit from the measurement
deficiency.

3.4 Related Work

The EEMBC suite and process for certification of results follow the example of the SPEC
[Hen00] and TPC [PF00] organizations for benchmarking desktop and server systems respectively.
SPEC and TPC have been continuously updating their benchmarks and procedures for over a decade
and have won wide respect within their domains. The EEMBC consortium has the potential to play
a similar role for embedded processors but is still in its very early stages.

Before the release of the EEMBC suite, the standard benchmark for embedded processor
was Dhrystone, a short synthetic program representative of system programming with integer arith-
metic from the early 1980s [Wei84]. Despite its little relevance to the workload of modern embedded
systems, most vendors still quote Dhrystone MIPS as a performance metric, the ratio of their pro-
cessor’s execution time over that of the VAX 11/785 [AF88]. Other benchmarks used for embedded
processors are Whetstone [GW76] and CPU2. Whetstone is a FORTRAN program that runs a set
of loops with integer, boolean, and floating-point arithmetic operations. It performs many iterative
calls to programmed subroutines and in-line transcendental functions. CPU2 is also a FORTRAN
program that includes portions of frequently used single and double-precision floating-point kernels.

Digital signal processors (DSPs) have typically used separate benchmarks from other em-
bedded designs. The BTDI suite is a popular collection of DSP benchmarks that includes FFT,
FIR, IIR, and other related kernels [EB98]. The DSPstone is a similar suite with academic ori-
gin [ZMM94]. Recently, DSP vendors have shown interest in the EEMBC suite because it allows
comparisons between DSP chips and embedded processors with DSP capabilities.

In the last few years, some academic groups have attempted to define benchmarks for
evaluating multimedia processors. The UCLA Mediabench includes a number of image, video,

16

and voice handling applications available in the public domain [LPMS97]. The Berkeley Multimedia
Workload extends the Mediabench suite both in terms of number of applications and size of the input
data [SS01a]. None of these suites has become popular outside the academic environment. First,
they represent the multimedia applications of workstations and desktop PCs and not the applications
in embedded devices. In addition, their code relies on the services of a full-size operating system,
which is not always available in embedded systems. The groups that proposed these suites did not
attempt to define and provide support for an acceptable process for measurement and certification
of results.

Finally, the MiBench is a recent academic effort for a free version of the EEMBC suite
[GRE+01]. MiBench introduces a new benchmark category for security applications such as encryp-
tion and digital signatures. In the five original categories, MiBench includes representative kernels
but not necessarily the same with EEMBC. In addition, MiBench focuses on high-end embedded
processors (32-bit or 64-bit) and not on 8-bit or 16-bit microcontrollers. Consequently, the MiBench
input data are at least one order of magnitude larger than the input data in EEMBC. Hence,
MiBench results are not directly comparable to EEMBC results. In early 2002, MiBench results are
not available for any commercial or research processor.

3.5 Summary

In this chapter, we presented the EEMBC suite for comparing embedded processors in
a variety of application domains. We will use the consumer and telecommunications benchmarks
of EEMBC to evaluate the vector microarchitectures proposed in this thesis. The five consumer
benchmarks represent image processing applications in digital cameras. The five telecommunications
programs represent applications for ADSL and wireless communication.

The EEMBC benchmarks capture the basic kernels for the corresponding applications
domains and exercise the execution component of an embedded microprocessor. However, their
small and static data sets are not representative of streaming input data in multimedia applications
and fail to stress the streaming capabilities of the memory system. Nevertheless, the EEMBC suite
is currently the only realistic option for evaluating a new microprocessor with a variety of embedded
applications and comparing it to number of commercially available designs.

17

Chapter 4

Vector Instruction Set

Architecture for Multimedia

“When you do the common things in life in an uncommon way,

you will command the attention of the world.”

George Washington Carver

The instruction set (ISA) is the portion of an architecture that is visible to software. It
defines the register and memory state of the architecture and a set of instructions that can operate
on the state. Certain instruction sets allow software to express a single operation on the state
with one instruction. Vector instruction sets, on the other hand, allow software to express multiple
independent operations with one instruction, which makes it easier to implement efficient hardware.
This chapter focuses on adjusting vector architectures to multimedia processing and introduces the
VIRAM instruction set, a vector architecture developed for embedded media processors.

Section 4.1 provides a brief overview of traditional vector instruction sets used with super-
computing applications. In Sections 4.2 and 4.3, we introduce a set of architectural enhancements
that target the characteristics of multimedia programs and general purpose systems. Section 4.4
presents the VIRAM architecture with a summary of its state and instructions. In Section 4.5, we
analyze the use of the VIRAM instruction set with multimedia benchmarks and compare it with
alternative architectural approaches such as VLIW and SIMD. Section 4.6 utilizes the experience
from using the VIRAM ISA with the multimedia benchmarks in order to evaluate some of the basic
decisions we made during its development. Finally, Section 4.7 overviews related work in instruction
set architectures for multimedia processing.

4.1 Introduction to Vector Instruction Set Architectures

Parallelism is the key to achieving high performance in modern microprocessors, for it
allows hardware to accelerate the execution of an application by processing multiple of its opera-
tions concurrently. Vector architectures provide a set of instructions for explicitly representing the
data-level parallelism in an application to the hardware used to execute it. They have been used
commercially for nearly three decades in the areas of scientific and high performance computing
[Rus78, MU84, Jon89, HL96]. This section reviews the fundamental concepts in register-based, vec-
tor architectures and provides the background for the instruction set issues addressed in the rest of
this thesis. Hennessy and Patterson provide a longer introduction to vector processing in Appendix
G of [HP02].

Vector instruction sets include the basic arithmetic and memory instructions for operating

18

(a)

element 1 element N

vr2

vr0

vr1

element 0

(b)

+ + +

r0

r1

r2

add $r2,$r0,$r1

+

vadd.vv $vr2,$vr0,$vr1

Figure 4.1: The difference between scalar and vector instructions. A scalar instruction (a) defines a
single operation on a pair of scalar operands. An addition instruction reads two individual numbers
and produces a single sum. On the other hand, a vector instruction (b) defines a set of identical
operations on the elements of two linear arrays of numbers. A vector addition instruction reads two
vector operands, performs element-wise addition, and produces a similar array of sums.

on individual numbers, similar to those found in all RISC architectures. In addition, vector archi-
tectures define high-level instructions that operate on linear arrays of numbers, known as vectors.
Figure 4.1 shows a vector instruction that specifies two vectors as input operands and produces a
result vector by executing the same operation on each pair of elements from the input arrays. In
other words, a single opcode and set of operands define a large number of identical, yet independent,
operations on the elements of two arrays. A vector instruction set typically defines vector instruc-
tions for all logical, integer, and floating-point operations. Vector architectures store array operands
in a vector register file, in the same way a register array holds the operands for scalar instructions in
RISC architectures. A vector register file is a two-dimensional storage array, where each row holds
all the elements for a single vector. The number of elements per register is a property either of the
ISA itself or of each processor that implements it.

A compiler can set the degree of data-level parallelism expressed by vector instructions
using the vector length register (VL). Each instruction reads this control register as a default input
operand and uses it to determine the number of element operations to execute. For example, an
addition instruction with vector length set to five will only add the first five element pairs of the
input operands and will not affect the remaining elements of the output vector register. Depending
on the amount of parallelism available in the application, the compiler can set the vector length
register to any value between one and the maximum number of elements stored per register, known
as the maximum vector length (MVL). If the data-level parallelism in the application exceeds that of
one vector instruction at maximum vector length, software can use strip-mining, a technique that
expresses a long sequence of identical operations as a loop of vector instructions [GBS94]. If all
vector instructions in a sequence are supposed to execute the same number of element operations,
the compiler needs to set the vector length register only once at the beginning of the sequence.

In addition to instructions for integer and floating-point operations, vector architectures
define instructions for exchanging data between vector registers and the memory system. Similar to
arithmetic instructions, vector memory operations perform a large number of element accesses and
operate under vector length control. Table 4.1 describes the three addressing modes supported by
virtually all vector architectures: unit stride mode fetches data from sequential locations; strided
mode addresses data in memory locations separated by a constant distance (stride); and indexed
mode uses the corresponding elements of a vector register as pointers to memory for exchanging
data for each element operation. The three modes allow applications to express their data-level
parallelism with vector operations on consecutive elements in the vector register file, regardless of
the exact layout of data in memory. As with scalar loads and stores, vector memory instructions

19

Mode Example Meaning When used
instructions

Unit vld $vr0,addr for i=0 to VL Sequential accesses;
stride vr0[i]←Mem[addr+i*d] stepping through

arrays within a loop
Strided vlds $vr0,addr,str for i=0 to VL Accessing columns of

vr0[i]←Mem[addr+i*d*str] arrays; accessing color
components of pixels

Indexed vldx $vr0,$vr1,addr for i=0 to VL Accessing sparse
vr0[i]←Mem[addr+vr1[i]] matrices; pointer

chasing

Table 4.1: The three addressing modes for vector memory accesses. The variable d designates the
size of the data item in memory (1, 2, 4, or 8 bytes). A vector instruction set typically defines one
load and one store instruction per addressing mode and data size combination. When the size of
elements in registers is larger than the size of data in memory, the instruction implies a conversion
using sign extension or truncation of the most significant bits.

come in several variations to support all the possible sizes of data in memory (1, 2, 4, and 8 bytes).
The typical alignment restriction is that the memory address for each vector element must be a
multiple of the memory data size in bytes. There are no alignment restrictions for the whole vector.

There are a few vector instructions that deviate from the element-wise execution model.
The most common exceptions are instructions that allow shuffling of elements within a vector register.
Although there is no uniform support across all architectures, commonly supported primitives include
operations for shifting element locations within a vector register (insert and extract) or packing and
unpacking of elements using a bit-mask (compress and expand). There are also instructions that
allow manipulation of a few control registers such as the vector length and support the exchange
of data between that vector register file and the scalar register file that holds operands for scalar
instructions.

It should be clear from the brief introduction that vector architectures have several impor-
tant advantages for applications with a high degree of data-level parallelism:

• A single vector instruction defines a large number of independent operations. By execut-
ing multiple element operations concurrently, a vector processor can keep multiple, deeply
pipelined datapaths busy without the need for high instruction fetch and decode bandwidth.
Since element operations are explicitly independent, there is no need to implement hardware
for hazard checks within one vector instruction.

• Vector memory instructions have a known access pattern. Prefetching techniques can accelerate
sequential or strided access for a large number of elements. The latency for initializing a
memory access can be amortized by fetching multiple elements in parallel or in a pipelined
manner. In other words, if sufficient memory bandwidth is available, memory latency is exposed
once for the entire vector, instead of once for each element in the vector.

• The roles for the processor (hardware) and the compiler (software) are truly complementary
and allow each one to focus on what it can do best. The compiler discovers the data-level
parallelism available in the application code and expresses it with vector instructions. The
hardware uses the explicit knowledge of parallelism to execute multiple element operations
concurrently for vector arithmetic and memory instructions.

20

• A single vector instruction is equivalent to an entire loop. Hence, applications require less
overhead instructions for incrementing loop indices or branching. The result is compact code
size and reduced dynamic instruction count.

4.2 Vector Architecture Enhancements for Multimedia

The data-level parallelism available in multimedia is similar to that in scientific applications,
as they both include computationally intensive kernels that repeat the same set of operations on their
input data. Still, in order to express multimedia applications efficiently using vector instructions, a
set of enhancements to traditional vector architectures is necessary. The modifications target some
of the distinctive characteristics of multimedia programs, such as the use of narrow data types,
fixed-point arithmetic, and reduction operations.

4.2.1 Support for Narrow Data Types

Unlike scientific applications where double-precision (64-bit) floating-point numbers are
the predominant data type, multimedia programs process video or audio streams using narrower
data. Pixels and audio samples are typically stored in memory using sequences of 8-bit or 16-bit
data. In addition, human vision and hearing have such a limited range of inputs that 16-bit and
32-bit accuracy is generally sufficient during data processing. Therefore, a vector instruction set for
multimedia must also define vector operations on 16-bit and 32-bit numbers in a way that allows
for efficient implementation.

A vector architecture can support all three data types within a single vector register file
by allowing different registers to store elements of different size. In order to use hardware resources
efficiently regardless of the data width, the storage space for a 64-bit element can hold multiple
narrower elements in every vector register. Similarly, segmented 64-bit datapaths for arithmetic
operations can execute multiple narrower operations in parallel. Therefore, four 16-bit vector ele-
ments fit in the space for a single 64-bit one, and a segmented 64-bit adder can calculate four 16-bit
element additions in parallel.

The compiler selects the width of vector elements and operations using the virtual processor
width register (VPW) [HT72]. Just like vector length, this control register is a default input operand
to all vector instructions. It selects between 64-bit, 32-bit, or 16-bit data types and instructs the
hardware to translate vector elements and operations accordingly. By properly setting VPW before
accessing each register, the compiler can store vectors of different element sizes in the same register
file. When the virtual processor width selects a narrow data type, the maximum vector length (MVL)
increases. A processor with maximum vector length of 16 elements for 64-bit data can store up to 32
elements per vector register for 32-bit data, or 64 elements for 16-bit data. As discussed in Chapter
5, switching to a narrower VPW also increases the peak performance of a vector processor.

An alternative mean to the VPW register for selecting the width of vector elements and
operations would be to encode it within the opcode of every vector instruction. All recent SIMD
extensions for RISC and CISC architectures employ this method for treating 64-bit scalar registers
as short vectors of narrower data. This approach consumes a large amount of opcode space, as every
operation requires one opcode for each supported data type. Given the large number of operations in
modern instruction sets and the variances necessary to select important options (signed or unsigned
arithmetic, vector or scalar operands, and so on), it is difficult to use this method without limiting
the number of operations supported or significantly complicating the instruction encoding. The VPW

approach, on the other hand, requires only one new control register and no additional opcode space.
The run time overhead for setting the control register is also small. Because multimedia kernels
typically use a single data type width for all arithmetic operations within each loop, a compiler can
set the VPW register once per loop to the widest data type used by any loop instruction.

21

ScaleMultiply Add

n
n

n

Y

shift
amount

W

Z

+
nRight

Shift*
X

Round

Saturate

n/2

n/2

Figure 4.2: The multiply-add model for a vector architecture for multimedia. All operands (X, Y,
Z, W) are vector register elements. The variable n designates their width (VPW) and the selected
accuracy of the overall result. The multiplier uses only half of the bits from X and Y, either the
upper or the lower part, in order to produce an n-bit result. Shifting right by a programmable
amount can scale the multiplication result to any fixed-point format. Rounding after scaling and
saturating after adding improve the final accuracy. If Z and W are elements of the same register,
the operation becomes multiply-accumulate.

4.2.2 Support for Fixed-point Arithmetic

Apart from narrow data types, multimedia applications frequently use saturated and fixed-
point arithmetic. Saturation replaces modulo arithmetic to reduce the error introduced by overflow
and underflow in signal and image processing algorithms. Fixed-point operations allow decimal
calculations within narrow integer formats. They require less hardware resources and are faster to
execute than floating-point operations.

Digital signal processor (DSP) architectures have always provided support for saturation
and fixed-point arithmetic. Their instruction sets include special versions of add, subtract, and shift
instructions that saturate the result in the case of overflow. Fixed-point support is more complicated
as the result of a multiply-accumulate operation, the most common fixed-point primitive, has twice
as many bits as the input operands. DSP architectures use one of the following two methods in
order to store as many result bits as possible and achieve high accuracy for the overall computation
[LBSL97]. The first approach introduces one or more special registers, called accumulators, that can
store more bits than the regular architecture registers. For example, a 16-bit DSP architecture may
include a 40-bit accumulator. Successive multiply-accumulate operations store their wide result in
an accumulator. The alternative approach suggests the use of a pair of consecutive registers in a
register file to store the wide result. Both approaches are efficient in terms of hardware resources, but
complicate significantly the task for compiling high-level code for such architectures. Register alloca-
tion and instruction scheduling are particularly difficult in the presence of a few extended-precision
registers or register pairs, that can be manipulated, loaded, or stored using special instructions and
complicated ordering rules. It is not surprising that most DSP chips perform significantly better
using hand-optimized assembly code rather than compiled executables [EB98, Lev00].

Figure 4.2 presents the multiply-add model that allows a vector architecture to provide
flexible support for fixed-point numbers of arbitrary format using regular vector registers for all
input and output operands. There are three basic steps to this model: first multiply the upper or
lower halves of the first two inputs; then scale the multiplication result to the desired fixed-point
format by shifting and rounding; finally perform saturating add with the third input operand. The
architecture can provide a separate instruction for each step or a single instruction for the whole
operation. In latter case, if there are not sufficient bits in the instruction encoding for the four
register operands, the third input and the output can be the same vector register, turning the
operation into a multiply-accumulate. Control registers can provide the shift amount for scaling and

22

the rounding mode, since the fixed-point format rarely changes halfway through a computation.
The arithmetic accuracy of the multiply-add model is a function of the data type width

(VPW) selected during its execution. With a large VPW, vector elements can hold more decimal bits
leading to a small rounding error. On the other hand, with a small VPW, vector registers hold more
elements and wide datapaths execute more narrow operations in parallel. Therefore, there is a
trade-off between accuracy and performance, and the compiler can select the appropriate setting for
each application. For example, consider an application that multiplies and accumulates 256 vector
pairs of 8-bit data in memory. Executing the multiply-add operations with VPW set to 32-bit leads
to full accuracy with no decimal bits rounded off, regardless of the exact data values. On the other
hand, if the application does not require full accuracy or the data values are relatively small, the
application can execute twice as fast by setting VPW to 16-bit. Since most multimedia applications
can tolerate small deviations in arithmetic precision, with careful selection of the shift amount and
the rounding mode, narrow data types are often appropriate to use with the proposed multiply-add
model.

Regardless of the type of registers used for multiply-add operations, programming language
issues prohibit compilers from extensively using fixed-point instructions. Languages like C and C++
do not provide straight-forward methods for expressing fixed-point arithmetic or saturation in the
application code. Consequently, calls to special library functions and assembly programming are
currently the only ways to exploit fixed-point support in the instruction set. Once the recently
drafted extensions that add fixed-point data types to the C language become widely used [Org99],
compilers will likely overcome this limitation. An alternative approach is to use compiler extensions
that allow users to describe application-level characteristics to the compiler [ECCH00]. The pro-
grammer can instruct the compiler how fixed-point arithmetic is described using existing language
semantics, which allows the compiler to use fixed-point instructions whenever possible.

4.2.3 Support for Element Permutations

Reduction or butterfly primitives are frequent in multimedia applications that include dot-
products or transformations like FFT. These primitives are difficult to express with vector instruc-
tions because either they produce a scalar output instead of a whole vector, in the case of reduc-
tions, or they don’t operate on corresponding elements from the input vectors, in the case of FFT.
To address this inadequacy, we introduce three vector instructions that perform a restricted set of
permutations on the elements of a vector register.

Figure 4.3 presents the vhalf permutation instruction for implementing reduction primi-
tives. The instruction splits the elements of a vector into two registers. Adding the two registers
at half the vector length performs the first step of an add reduction. By iteratively applying the
permutation, the vector length reduction, and vector addition of the two registers, we can reduce
the original vector to a single element sum. Replacing the addition with other instructions, such as
multiply or exclusive or, allows the implementation of a variety of arithmetic and logical reductions.

Figure 4.4 presents the operation of the vhalfup and vhalfdn permutation instructions for
vectorized butterflies. Each instruction copies elements between two registers towards one direction
using a programmable distance. Along with the corresponding vector addition, the two instructions
implement one stage of a floating-point or fixed-point FFT. Even though a single instruction could
implement both permutation patterns [Asa98], individual instructions are preferred because they
require less hardware resources and simpler control for interlocks.

A single instruction that can execute any random permutation of vector elements could
replace the three proposed instructions. Certain SIMD extensions for RISC architectures include
a general permutation instruction for this purpose [Phi98]. Yet, due to the generality of a random
permutation, such an instruction has complicated control and is either slow or requires an expensive
crossbar structure for fast execution. On the other hand, the three simpler permutation instructions
implement only the small set of permutation patterns that are frequent in multimedia applications.

23

Σ

0−7Σ

1,5,3,7

1,5,3,7Σ0,4,2,6Σ

3,7Σ2,6Σ

3,7Σ2,6Σ1,5Σ0,4Σ

+

+

+ vhalf $vr1, $vr0 (VL=8)$vr1

$vr0

$vr1

$vr0

$vr1

$vr0

$vr0

0 1 2 3 4 5 6 7

4 5 6 7

vhalf $vr1, $vr0 (VL=4)

vhalf $vr1, $vr0 (VL=2)

Figure 4.3: An add reduction of a vector with eight elements using the vhalf permutation instruc-
tion. The instruction reads the second half of the source register and copies the elements at the
beginning of the destination register. The vector length register, which must be a power of two,
indicates the number of elements in the register at any time. A reduction step consists of vhalf
followed by a vector addition of the source and destination registers of the permutation at half the
vector length. Three iterative steps are necessary to reduce the initial vector to a single element
value.

Due to their regularity, they are easy to implement and execute fast with modest hardware resources
(see Chapter 5).

Another alternative is to implement the permutations with the shuffling instructions in
traditional vector architectures (extract, insert, compress, and expand) or with strided and indexed
memory operations. The shuffling instructions are more complicated to implement than the three
simple permutations and do not directly provide the desired functionality. The use of memory
instructions puts unnecessary pressure on the memory system, the most significant performance
bottleneck for most modern processors. The modest hardware resources needed for the permutation
instructions should be easier to provide than increased memory system performance.

To utilize the permutation instruction for reductions, a compiler must recognize linear
recurrences on operations like addition, maximum and minimum, and logical exclusive or. On
the other hand, recognizing the many algorithmic descriptions for FFT is a more difficult task.
Hand-optimized libraries with FFT routines are an easier way to use the butterfly permutation
instructions.

4.2.4 Support for Conditional Execution

Several multimedia kernels include conditional statements, such as if-then-else constructs,
in the main loop body. Without special architectural support, the branch instruction necessary to
implement a conditional statement prohibits the use of vector instructions.

A vector architecture can support vectorized execution of conditional statements using a
flag register file, which stores vector registers with single bit elements [Asa98]. Each vector in-
struction uses one of the flag register as a source of masks for conditional execution of its element

24

$vr1

$vr0

0 1 2 3 4 5 6 7

1 3 5 7

0 1 2 3 4 5 6 7

$vr1

$vr0

0 1 2 3 4 5 6 7

2 3 6 7

4 5 6 7

vhalfup $vr1, $vr0

$vr1

$vr0

distance=1

distance=2

distance=4

$vr1

$vr0

0 1 2 3 4 5 6 7

$vr1

$vr0

0 1 2 3 4 5 6 7

$vr1

$vr0

0 1 2 3 4 5 6 7

vhalfdn $vr1, $vr0

0 2 4 6

0 1 4 5

0 1 32

(a) (b)

Figure 4.4: Example use of the vhalfup (a) and vhalfdn (b) permutation instructions. Each
instruction performs one half of a butterfly permutation by copying elements from the input to the
output register based on the distance stored in a control register. They only differ in the direction
of the element move. The instructions do not modify the remaining elements of the output register,
which are marked with gray. The vector length must be a power of two for both instructions.

operations. An operation writes its result back to the register file only if the corresponding bit
in the flag register is set. Comparisons between elements of vector registers, memory loads, and
logical operations can produce the proper values for flag registers. If there are not enough bits in
the encoding of every instruction to specify any flag register, instructions can select from one of two
default flag registers using a single opcode bit. Logical operations between flag registers can move
values to and from the default flags, if more than two flag registers are necessary as with the case
of nested conditional statements.

Masked execution of instructions using flag registers is not the only way to support con-
ditional execution for vector registers. In [SFS00], Smith, Faanes, and Sugumar present a thor-
ough study of all the alternatives for conditional execution, including methods based on conditional
merges, indexed memory operations, and vector shuffling instructions (compress - expand). The
last two approaches compress vectors so that no masked elements are included in a register. The
study reviews the ease of use with a variety of programming constructs, as well as the complexity
and speed of potential hardware implementations for each alternative. It concludes that masked
execution of vector instructions is simpler to use and implement, especially in highly parallel vector
processors. Even though masked execution is not always the fastest alternative for certain sparse
matrix kernels, it is sufficiently fast for all programming constructs, including nested if statements.

4.3 Vector Architecture Enhancements for General Purpose

Systems

With vector architectures for scientific computing, system issues are not a major consider-
ation. In this environment, a single application may run uninterrupted for hours and an auxiliary
computer handles input-output and other system activities. For vector processors employed in em-
bedded systems, however, this is not necessarily the case. Even though the scalar component of a
vector architecture implements most system features, a few potential issues, such as virtual memory

25

and context switch time, call for the introduction of system concepts in the heart of the vector
instruction set.

4.3.1 Support for Virtual Memory

Virtual memory is likely the single most important system feature for architectures for
desktop computers and servers. It enables address space protection, data and code sharing, large
address spaces with paging to disk, sparse address spaces, and memory-mapped IO. For embedded
systems, several of these features are not particularly important, because such systems tend to be
simpler and used for a small set of tasks. However, as embedded software development becomes an
increasingly difficult task, some embedded systems require an operating system as complicated as
Linux. For this case, address space protection is necessary and the architecture must support virtual
memory.

There are several alternatives and choices in providing architectural support for virtual
memory: pages or segments, software or hardware assisted exceptions, and so forth [JM98]. For
this work, we have selected to support paged virtual memory using a software managed translation
lookaside buffer (TLB) as defined in the MIPS architecture [Hei98]. Still, all issues would be similar
with any other choice. If virtual memory is enabled in a specific system, the TLB must perform
protection checks and translate from virtual to physical all addresses generated for vector load and
store instructions. There are two issues to address regarding TLB accesses. First, with vector
processors attempting to generate multiple addresses per cycle in order to fetch many elements
in parallel, the TLB can become an additional performance bottleneck. In Chapter 5, we discuss
a vector TLB implementation that addresses this problem. The second issue is the state of the
processor when an address lookup misses in the TLB or generates a protection violation. Since this
is a software managed TLB, in either case, a virtual memory exception is generated and execution
continues with an operating system handler.

Ideally, the state of a processor after any exception is precise. All the instructions before
the faulting one have completed their execution and all other instructions, including the faulting
one, have not updated the architecture state. In practice, this is hard to implement because modern
processors execute multiple instructions in parallel in a pipelined and, some times, out of order
manner. It is even more complicated for vector architectures because every instruction defines a
large number of operations that may execute over a long period of time and any one of them can
cause a exception. In Chapter 5, we present a simple vector processor with support for imprecise,
yet restartable, memory exceptions. Several instructions before or after the faulting one may be
partially completed at the time the software handler initiates, but the processor provides sufficient
mechanisms for the handler to run and execution of the interrupted program to resume correctly. In
Chapter 7, we revisit the definition of precise state for a vector processor and discuss a mechanism
for implementing precise exceptions and its cost in terms of performance and hardware resources.

4.3.2 Support for Arithmetic Exceptions

Arithmetic instructions can also produce exceptions, especially those operating on floating-
point numbers. For vector supercomputers, architectural support for detecting and servicing floating-
point exceptions at full execution speed is critical, because the accuracy of applications like weather
prediction often depends on the ability to correctly handle denormals, overflow, and underflow. For
multimedia applications, on the other hand, elaborate support for fast arithmetic exceptions is not
an important requirement. In most cases, arithmetic exceptions are disabled altogether, since a few
incorrect pixels in a video frame are preferred over the impact on real-time performance induced
by running exception handlers whenever exceptions occur. Support for arithmetic exceptions is
necessary only for application debugging, during which reduced execution speed is not an issue.

26

Asanovic has proposed a method for keeping track of arithmetic exceptions using the flag
register file [Asa98]. Element operations that generate exceptions set the corresponding bits in flag
registers, with a separate register used for each type of integer or floating-point exception. The
application can periodically check these flag registers and raise the proper exceptions if any bits
are set. Coupled with a processor mode for executing a single vector instruction at the time, this
method provides sufficient support for application debugging.

4.3.3 Support for Context Switching

With each vector register containing tens of elements, the amount of architectural state in
a vector processor is considerable. Saving and restoring all the vector state can increase the cost of
context switching, despite the presence of a high bandwidth memory system for vector loads and
stores. To alleviate this impact, it is important to reduce both the number of context switches that
manipulate vector state and the amount of state saved or restored each time.

In a well-balanced system for real-time applications, input-output handlers and periodic
operating system routines are the most common reasons for interrupting the execution of a program.
These handlers use scalar instructions and rarely update any vector state. To avoid saving and
restoring vector registers is such cases, we need a mechanism for marking vector state and instructions
as “unusable” before switching out a vector application. If the new application, whether a handler
or a user program, tries to issue a vector instruction or access vector state, an exception is generated
to instruct the operating system to save and restore the vector state. Otherwise, the previous
application will find its vector state intact when it resumes execution. A control register that
stores the identification number for the last process that updated vector state is necessary for this
technique. On issuing a vector instruction, we compare this register to the identification number of
a currently running process and generate an exception if they are different. Chapter 5 discusses how
this method allows a vector processor to continue executing vector instructions for an application,
while an interrupt handler runs using scalar instructions.

To reduce the amount of vector state involved in a context switch, the architecture can
define valid and dirty bits for each vector register [PMSB88]. The valid bits indicate registers with
useful data that the operating system must restore during context switches. The dirty bits indicate
registers with data updated since the last context switch that the operating system must save. For
a system with 32 vector registers, a couple of control registers are sufficient to store all dirty and
valid bits. Writes on a vector register should automatically set the corresponding valid and dirty
bits. The compiler should produce code that clears the valid bit every time it deallocates a register,
and the operating system must clear all dirty bits when saving the state for a vector process. The
hardware can also keep track of the largest vector length used by an application in order to reduce
the number of elements saved and restored for each register [Asa98].

4.4 The VIRAM Instruction Set Extension for MIPS

To explore in practice the ideas presented in Sections 4.2 and 4.3, we developed the Vector
IRAM (VIRAM) instruction set extension for the MIPS-64 RISC architecture [MIP01]. Figure
4.5 presents the vector state introduced by the VIRAM architecture, including the vector and flag
register files. The instruction set does not define the maximum number of elements per vector or flag
register. An implementation can select the proper MVL value based on the performance requirements
and available hardware resources. A read-only control register makes this value available to software
at run-time, hence with proper strip-mining of vectorized code, the same binary executable can run
on every processor implementation of the architecture.

Table 4.2 presents a summary of the VIRAM instructions. There are 91 instructions that,
due to the various instruction options, occupy 660 opcodes in the coprocessor 2 space of MIPS-64.

27

Element 1

vs15

Element (MVL−1)Element 1

vs0

vs1

vf0

vr1

vf1

vc1

vc0

vc31

Element (MVL−1)

vr0

Element 0

vf15

Element 0

vm0

vm1

vr31 vm31

VPW bits

REGISTERS
MEMORY

64 bits

REGISTERS
SCALAR

32 bits

1 bit

CONTROL
REGISTERS

32 bits

FLAG REGISTERS

VECTOR REGISTERS

Figure 4.5: The architecture state in the VIRAM instruction set. The vector and flag register
files have 32 and 16 registers respectively. The control register file holds values such as the vector
length (VL) and the virtual processor width (VPW). Two additional scalar register files hold scalar
data for vector instructions and memory addresses, strides, and increments for vector load and store
operations. This state is in addition to any state defined by the MIPS-64 architecture.

The majority of opcodes define arithmetic operations for integer, fixed-point, and floating-point
numbers. Vector loads and stores allow an arbitrary post-increment to the scalar register that holds
the base address. All arithmetic and memory operations can select one of the first two flag registers
to provide masks for conditional execution. For a detailed presentation of all the instructions set
features, refer to the VIRAM instruction set manual [Mar99].

Defining VIRAM as a coprocessor extension instead of a stand-alone instruction set allows
us to take advantage of any orthogonal developments in the MIPS architecture and use the large
amount of development tools available for it. Since coprocessor specifications at the instruction set
level are similar for most RISC architectures, we can easily port the vector extensions to any other
architecture. We can also use any MIPS processor core with coprocessor support as the basis for a
VIRAM processor implementation.

The penalty for this flexibility is the need for the three scalar register files in the vector
architecture state (see Figure 4.5). Vector instructions must access scalar registers for control val-
ues, memory addresses, and scalar operands. If the scalar and vector hardware are implemented
separately and communicate only through the coprocessor interface, vector instructions cannot di-
rectly access the register files in the scalar core. Move to and from coprocessor instructions are the
only way to move scalar data to the register files in the vector hardware for vector instructions to
use. Even though the area for the three register files may be negligible for most implementations,
the move instructions can introduce significant run-time overhead if not carefully optimized by the
compiler. If close integration of the scalar and vector hardware is an option, however, the vector
instructions can read scalar values directly from the MIPS-64 register file, hence, the extra register
files and the move instructions are no longer necessary.

The vectorizing compiler used with the VIRAM architecture is based on the Cray PDGS
system for vector supercomputers [Cra00]. It has C, C++, and Fortran front-ends and performs
an extensive list of optimizations including outer-loop vectorization. We developed a back-end that
generates executable code for VIRAM implementations. To simplify the back-end development,
we included in the architecture several traditional vector instructions not obviously necessary with

28

Mnemoic Operation

Vector Integer Arithmetic
vabs Absolute value
vadd Add
vsub Substract
vmullo Multiply lo
vmulhi Multiply hi
vdiv Divide
vmod Modulo
vsra Arithmetic right shift
vcmp Compare
vmin Minimum
vmax Maximum

Vector Floating-Point Arithmetic
vabs.{s,d} Absolute value
vadd.{s,d} Add
vsub.{s,d} Subtract
vmul.{s,d} Multiply
vmadd.{s,d} Multiply add
vmsub.{s,d} Multiply subtract
vnmadd.{s,d} Negative multiply add
vnmsub.{s,d} Negative multiply subtrace
vdiv.{s,d} Divide
vrecip.{s,d} Reciprocal
vsqrt.{s,d} Square root
vrsqrt.{s,d} Reciprocal square root
vneg.{s,d} Negate
vcmp.{s,d} Compare
vcvt Convert
vtrunc Truncate
vround Round
vceil Celling
vfloor Floor

Vector Fixed-Point Arithmetic
vsat Saturate
vsadd Saturating add
vssub Saturating subtract
vsrr Saturating shift right
vsls Saturating sift left
vxumul Multiply upper halves
vxlmul Nultiply lower halves
vxumadd Multiply add upper halves
vxumsub Multiply subtract upper halves
vxlmadd Multply add lower halves
vxlmsub Multply subtract upper halves

Mnemonic Operation

Vector Logical
vand And
vor Or
vxor Exclusive Or
vnor Nor
vsll Shift left logical
vsrl Shift right logical

Vector Load and Store
vld Unit stride load
vst Unit stride store
vlds Strided load
vsts Strided store
vldx Indexed load
vstx Indexed store
vstxo Ordered indexed store
vfld Flag load
vfst Flag store

Vector Processing
vins Insert
vext Extract
vcompress Compress
vexpand Expand
vmerge Merge
vfins Flag insert
vhalf Reduction permutation
vhalfup Left butterfly
vhalfdn Righ butterfly

Flag Logical
vfand And
vfor Or
vfxor Exclusive Or
vfnor Nor
vfclr Clear
vfset Set

Flag Processing
viota Iota
vciota Continuous iota
vfpop Population count
vfff1 Find first one
vffl1 Find last one
vfsetbf Set before first one
vfsetif Set including first one
vfsetof Set only first one

Table 4.2: The VIRAM instruction set summary. Instruction options, such as signed or unsigned
arithmetic and the data size in memory, have been omitted for simplicity.

29

multimedia applications, such as the compress and expand shuffling operations. The compiler is
able to recognize linear recurrences on operations like addition and logical exclusive or, and generate
vector code for the reduction using the permutation instructions. On the other hand, recognizing
the many algorithmic descriptions for FFT is a difficult task for the compiler. Instead, we provide a
set of hand-optimized FFT routines as an easier way to use the butterfly permutation instructions
available.

The VIRAM instruction set was in development from 1997 to 2000. The original definition
was missing certain features, which we added during the design of the VIRAM-1 processor imple-
mentation (see Chapter 5). We introduced post-increment for vector loads and stores to reduce the
overhead of coprocessor moves and the permutation instructions for vectorizing dot-products and
FFTs. The need to support arbitrary fixed-point formats motivated the current form of the vector
multiply-add model. In terms of implementation difficulty, most instruction set features, including
support for multiple data sizes, proved straight-forward. Vector memory operations were the most
difficult to implement, due to their interaction with the memory system and the importance of high
performance loads and stores for a vector processor. The regularity of the permutation instructions
made their control logic simpler than we initially expected. On the other hand, the traditional vector
instructions for shuffling elements were extremely difficult to implement and debug.

4.5 Instruction Level Analysis of Multimedia Benchmarks

Before exploring the efficiency of hardware implementations of the VIRAM architecture, it
is important to perform an instruction level characterization of the multimedia benchmarks. Specific
information on the use of the instruction set features in each benchmark is the key to understanding
potential performance deficiencies and proposing hardware mechanisms to overcome them.

4.5.1 Benchmark Vectorization

All benchmarks in the consumer and telecommunications categories of the EEMBC suite
are vectorizable to some extent. With the exception of Fft, the VIRAM compiler is able to vectorize
each benchmark in a way similar to the one an experienced assembly programmer would use.

Rgb2cmyk and Rgb2yiq contain a single loop that operates separately on every pixel in
the image. They are trivial to vectorize using strided accesses to separate the color components of
each pixel. On the other hand, Filter contains two nested loops that iterate across the rows and
columns of the image respectively. We vectorized the loop for columns because it allows the use of
unit stride accesses and requires fewer loads per pixel. Because digital images contain thousands of
pixels, Rgb2cmyk, Rgb2yiq, and Filter perform arithmetic and memory operations on long vectors
with tens of elements.

Unlike the other EEMBC benchmarks that are single-function kernels, Cjpeg and Djpeg

are larger applications with tens of subroutines. They both perform 2-D discrete cosine transforms
(DCT) on 8×8 pixel blocks, which account for more than half of the overall run-time. We vectorized
the two constituent, 1-D DCTs across the rows and columns of the block respectively. The vector
length in the DCT code is 8. Alternatively, we could perform outer-loop vectorization and process
tens of 8 × 8 blocks concurrently in order to generate longer vectors. However, outer-loop vector-
ization of DCT would require global changes to the function structure and the buffering scheme in
the two benchmarks. Apart from DCT, we vectorized several image manipulation routines (color
conversion, up-sampling, down-sampling) and functions that emulate file-system operations. These
functions operate on whole rows or columns of images and have long vectors. For Cjpeg, we also
vectorized the discovery of runs of zero coefficients in the function for Huffman encoding.

For the Autocor telecommunications benchmark, we vectorized the inner loop that per-
forms a dot-product on the input data for each time-delay unit defined by the outer-loop. With

30

Op Inst % % Vector
Count Count Vector Scalar VPW Length
(×103) (×103) Op Inst Op Inst Avg (Max)

Rgb2cmyk 1,000.2 11.4 99.6% 68.4% 0.4% 31.4% 16 (100%) 128.0 (128)
Rgb2yiq 1.386.0 36.0 98.9% 59.9% 1.1% 40.1% 32 (100%) 64.0 (64)
Filter 1,147.7 20.1 99.2% 53.2% 0.8% 46.8% 16 (100%) 106.0 (128)
Cjpeg 13,682.3 5,427.4 64.8% 11.5% 35.2% 88.5% 16 (27%) 41.4 (128)

32 (73%) 13.3 (64)
Djpeg 11,997.3 4,505.3 67.2% 12.7% 32.8% 87.3% 16 (39%) 98.1 (128)

32 (61%) 13.0 (64)

Autocor 54.5 4.1 94.7% 29.2% 5.3% 79.8% 32 (100%) 43.4 (64)
Convenc 8.4 0.3 97.1% 20.3% 2.9% 79.7% 16 (100%) 128.0 (128)
Bital 192.8 13.1 95.7% 36.9% 4.3% 63.1% 32 (100%) 38.4 (64)
Fft 22.5 0.7 98.9% 63.2% 1.1% 36.8% 32 (100%) 63.7 (64)
Viterbi 147.6 19.6 92.1% 40.1% 7.9% 59.9% 16 (100%) 17.8 (128)

Table 4.3: The dynamic instruction set counts for the multimedia benchmarks. The first two columns
present the total number of operations and instructions executed in each benchmark. The four
following columns present the percentages (%) of operations and instructions that execute in vector
and scalar mode respectively. The VPW column specifies the element width used in each benchmark.
Because Cjpeg and Djpeg perform both 16-bit and 32-bit operations, we also provide in parenthesis
the percentage of vector operations that used each VPW value. The last column presents the average
vector length along with the maximum vector length for the VPW in each benchmark. For Cjpeg and
Djpeg, we report the average vector length for each VPW value separately.

Convenc, we used indexed memory accesses to vectorize the inner loop that examines each input data
word and updates the output branch-words. In Bital, we vectorized across the number of output
buffers. A reduction is also necessary in each iteration of the outer-loop to count the number of bits
allocated thus far. For Viterbi, we vectorized the generation of branch metrics and the forward
sweeping of decoding states that includes the add-compare-select operations. However, we could
not vectorize the back-tracking loop that produces the final output due to dependencies. Finally,
we vectorized Fft manually in assembly using the intra-register permutation instructions for the
butterfly stages.

The vector length in the telecommunications benchmarks depends on the size of the input
data and the values of the control parameters for each kernel. For the datasets supplied by EEMBC,
all benchmarks excluding Viterbi operate on relatively long vectors, with a few tens of elements
each. In Viterbi, the vector length is determined by the number of decoding states, which is
typically 8 or 16.

4.5.2 Dynamic Instruction Set Use

Table 4.3 presents the dynamic execution counts for the ten multimedia benchmarks. It
differentiates between operations and instructions. A scalar instruction defines a single operation.
Hence, for a scalar architecture the terms operation and instruction are interchangeable. On the
other hand, a vector instruction specifies a number of element operations equal to the value of the
vector length at the time. For a vector architecture, the instruction count indicates only the number
of instructions fetched and decoded by the processor. It is the operation count that specifies the
actual workload for each benchmark.

The first interesting point of Table 4.3 is the degree of vectorization for the benchmarks;

31

% Arithmetic % Misc. % Load % Store Arith.

± � ×
∑

≥ FL VP U S X U S X Mem.

Rgb2cmyk 31 – – – 15 – – – 23 – – 31 – 0.9
Rgb2yiq – 17 17 32 – – – – 17 – – 17 – 2.0
Filter 53 7 13 – – – – 19 – – 7 1 – 2.7
Cjpeg 29 8 14 – 3 2 1 12 11 1 15 4 – 1.3
Djpeg 31 8 11 3 3 – – 20 4 1 10 8 1 1.3

Autocor 8 – – 30 – – 4 58 – – – – – 0.6
Convenc 57 – – – – – – 31 – – – 12 – 1.3
Bital 38 13 – – 13 22 2 6 – – 6 – – 5.3
Fft 35 9 18 – – – 14 10 – 7 5 2 – 2.6
Viterbi 40 9 – – 9 1 – 16 4 – 5 16 – 1.4

Average 32 7 7 7 4 3 2 17 6 1 5 9 0 1.9

Table 4.4: The distribution of vector operations for the multimedia benchmarks. All columns except
the last one present percentages (%) of the total number of vector operations. The four major classes
of vector operations are arithmetic, miscellaneous (misc.), load, and store. The operations categories
for the arithmetic class are: simple arithmetic and logical (±), shift (�), multiply (×), multiply-add
(
∑

), and comparisons (≥). The miscellaneous class includes flag operations (FL) and operations for
permutations and vector shuffling (V P). The load and store operations are divided into unit-stride
(U), strided (S), and indexed accesses (X). The last column presents the ratio of vector arithmetic
to memory (load-store) operations for each benchmark.

in other words, the percentage of the total number of operations defined by vector instructions. For
most benchmarks, the degree of vectorization exceeds 90%, which demonstrates the effectiveness
of the vector architecture with expressing the data-level parallelism in the benchmarks. Cjpeg and
Djpeg exhibit the lowest degrees of vectorization because they execute Huffman coding and decoding
using mostly scalar instructions. Still, approximately 65% of operations in Cjpeg and Djpeg are
due to vector instructions. It is also interesting to notice that the number of vector operations is
high despite the low percentage of vector instructions. For example, only 20% of the instructions in
Convenc are vector, but they define 97% of the overall operations.

The second noteworthy point in Table 4.3 is the average vector length. Even though
long vectors are not necessary, they are desirable. Instructions that operate on long vectors can
keep functional units in a vector processor busy for several clock cycles. Hence, the existence of
long vectors translates to reduced instruction issue bandwidth requirements. For five benchmarks
(Rgb2cmyk, Rgb2yiq, Filter, Convenc, and Fft), the average vector length is almost equal to the
maximum. For Autocor and Bital, the average vector length is limited to approximately 60%
of the maximum because of the frequent use of dot-products that progressively reduce the size of
vectors. Cjpeg, Djpeg, and Viterbi operate mostly on short vectors with 13 to 18 elements on the
average. It is interesting to note that the distribution of average vector lengths for the multimedia
benchmarks is similar to the distribution reported for supercomputing applications [Esp97].

Table 4.4 describes the distribution of vector operations in each benchmark. Simple arith-
metic operations and unit stride load accesses are the most repeatedly used categories across all
benchmarks. Nevertheless, for almost every operation category in the instruction set, we can find
at least one benchmark that makes frequent use of it. The permutation instructions are rarely
used in general, but their existence is critical for the vectorization of reductions and butterflies
in Autocor, Bital, and Fft. The only operation categories in the VIRAM architecture not used
with the EEMBC benchmarks are divides and indexed stores. However, divides are frequent in 3-D

32

Stride in Bytes (% op)

Rgb2cmyk 3 (23%) 4 (31%)
Rgb2yiq 3 (34%)
Filter 320 (1%)
Cjpeg 2 (1%) 3 (4%) 4 (7%) 32 (3%)
Djpeg 2 (2%) 3 (7%) 32 (1%)

Convenc 2 (12%)
Fft 8 (2%)
Viterbi 688 (4%) 4 (16%)

Table 4.5: The distribution of strides for the multimedia benchmarks. We express stride as the
distance in bytes between the memory locations for two consecutive elements in a strided load or
store access. The figure in parenthesis next to each stride value presents the number of memory
operations that use this stride as a percentage (%) of the total number of vector operations. Unit
stride accesses are not included. The distance between two consecutive elements in unit stride
accesses is zero.

graphics applications, which are not represented in the EEMBC suite.
The last column of Table 4.4 presents the ratio of arithmetic to memory operations. This

ratio is important for balancing the mix between arithmetic and load-store functional units in imple-
mentation of the VIRAM architecture. All benchmarks excluding Autocor and Rgb2yiq perform
more than one arithmetic operation per memory access. The average ratio is approximately two
arithmetic operations per memory access. For supercomputing benchmarks, the average ratio is
typically closer to one [Esp97].

Finally, Table 4.5 presents the distribution of strides for the benchmarks with stride ac-
cesses. Small strides, between 2 and 4 bytes, are the most frequent across all benchmarks. Larger
strides are less common and occur in kernels that process columns of two-dimensional data struc-
tures, such as Cjpeg and Djpeg.

4.5.3 Code Size

The static code size of applications is generally important for any kind of system because
it affects the size, performance, and power consumption of the instruction cache. For the embedded
domain, there is an additional reason for low code size. Most embedded systems store executable
code in some form of non-volatile memory such as ROM or Flash. Compact code size lowers the
system cost because the application can use a smaller ROM or Flash chip.

Tables 4.6 and 4.7 present the code size of the multimedia benchmarks for VIRAM and a
number of alternative architectural approaches such as RISC, CISC, VLIW, and DSP. For VIRAM,
we report the code size achieved both with direct compilation and after tuning the basic kernels of
each benchmark in assembly. Assembly tuning is beneficial for performance because the VIRAM
compiler produces unscheduled code. However, it is also advantageous with code size. Because the
PDGS system was originally written for the Cray-1 architecture that had only 8 vector registers,
the VIRAM compiler is often confused and produces unnecessary code that spills vector registers. It
also attempts to use disjoint sets of register for different classes of operations, which leads to needless
copying of vector registers. Finally, the scalar portion of the code is sub-optimal both in terms of
scheduling and code density. The compiler fails to move the calculation of constants outside the
loop body (code motion) and does not perform extensive elimination of common sub-expressions.
However, the compiler is extremely efficient with vectorization. Its shortcomings are acceptable for
an academic research project and straight-forward to improve for commercial use.

33

Vector CISC RISC VLIW
(VIRAM) (x86) (MIPS) (Trimedia)

cc as cc cc cc cc-opt

Rgb2cmyk 0.67 (0.9) 0.27 (0.4) 0.72 (1.0) 1.78 (2.5) 2.56 (3.6) 6.14 (8.5)
Rgb2yiq 0.52 (0.6) 0.41 (0.5) 0.89 (1.0) 1.57 (1.8) 4.35 (4.8) 34.56 (38.6)
Filter 1.32 (1.4) 0.70 (0.7) 0.94 (1.0) 1.99 (2.1) 4.67 (4.9) 3.58 (3.8)
Cjpeg 60.25 (2.0) 58.88 (1.9) 30.01 (1.0) 58.65 (1.9) 114.94 (3.8) 180.03 (6.0)
Djpeg 70.30 (2.0) 68.44 (1.9) 35.96 (1.0) 58.17 (1.6) 117.44 (3.3) 163.00 (4.5)

Average (1.4) (1.1) (1.0) (2.0) (4.1) (12.3)

Table 4.6: Static code size comparison for the consumer benchmarks. Code sizes are reported in
KBytes. Next to each code size, we present in parenthesis its ratio to the code size for the x86 CISC
architecture, where larger means bigger code. We differentiate between code generated with direct
compilation (cc), with significant restructuring of the C code (cc-opt), and with assembly tuning of
important kernels (as). The code sizes for architectures other than VIRAM are those from official
EEMBC reports [Lev00]. The optimized code for the Trimedia VLIW architecture includes SIMD
instructions [SRD96].

Table 4.6 compares the code size of VIRAM to the other architectures for the consumer
benchmarks. The x86 CISC architecture produces the most compact code for consumer benchmarks
because it includes variable length instructions and memory to memory operations. Compiler code
for VIRAM is 1.4 times larger on the average than code for the x86 CISC architecture. Tuning
in assembly reduces the ratio to x86 down to 1.1. VIRAM code is actually smaller than x86 for
Rgb2cmyk, Rgb2yiq, and Filter. Cjpeg and Djpeg include thousands of lines of code for error
checking and for emulating file-system services, which are not vectorized and lead to large code
size. RISC code for the MIPS architecture is 2.0 times larger than x86. VLIW code with direct
compilation for the Trimedia architecture is 4.1 times larger than x86. If the C code is modified for
maximum performance on a VLIW processor, the ratio between VLIW and x86 bloats to 12.3.

Table 4.7 compares the code size of VIRAM to the other architectures for the telecommu-
nications benchmarks. The DSP architecture by Analog Devices (ADI) produces the most compact
code for consumer benchmarks because it includes features such as zero-overhead loops and special
addressing modes for reductions and FFT. Compiler code for VIRAM is 4.6 times larger on the
average than code for DSP. Tuning in assembly reduces the ratio down to 2.0. Code for x86 is
7.5 times larger than DSP, mostly because of the poor code density for Convenc and Fft. RISC
code for MIPS is 8.0 times larger than DSP. The VLIW architecture in this case is the TMS320C6
[Tru97], which implements VLIW instructions on top of a basic DSP architecture. Straight-forward
compilation produces code 5.8 times larger than DSP. C-level optimizations for VLIW lead to code
sizes 7.8 times larger than DSP.

The compact code size of VIRAM is due to four basic reasons. First, each vector instruction
captions a large amount of data-level parallelism. Therefore, there is little need for static scheduling
techniques such as software pipelining and loop unrolling [Muc97], which increase instruction-level
parallelism but lead to bloated code size. This advantage is particularly obvious when comparing
VIRAM to the VLIW approaches, especially if the VLIW code is tuned for performance. Optimized
VLIW code is 2 to 10 times larger than code for VIRAM. Of course, VLIW code incurs the additional
overhead of empty slots in long instructions [Fis83]. The second beneficial factor for VIRAM is that
vector memory instructions capture operations for address handling such as indexing, scaling, and
auto-increment. RISC, CISC, and VLIW architectures must execute several instructions around each
load or store to capture this functionality. Furthermore, the permutation instructions in VIRAM
allow compact descriptions of dot-products and butterfly primitives. In contrast, CISC, RISC,

34

Vector CISC RISC VLIW DSP
(VIRAM) (x86) (MIPS) (TI TMS320C6) (ADI)

cc as cc cc cc cc-opt cc

Autocor 1.0 (3.7) 0.3 (1.1) 0.5 (1.9) 1.1 (3.9) 0.9 (3.2) 1.5 (5.1) 0.3 (1.0)
Convenc 0.7 (6.2) 0.3 (3.3) 0.8 (7.5) 1.6 (15.4) 1.1 (10.6) 2.0 (19.2) 0.1 (1.0)
Bital 1.0 (2.9) 0.6 (1.7) 0.7 (1.9) 1.5 (4.2) 2.3 (6.5) 1.4 (4.0) 0.4 (1.0)
Fft – (–) 0.7(1.1) 15.7 (23.0) 5.5 (8.0) 3.0 (4.3) 3.5 (5.2) 0.7 (1.0)
Viterbi 2.6 (5.7) 1.1(2.5) 1.3 (3.0) 3.8 (8.4) 1.9 (4.2) 2.6 (5.6) 0.4 (1.0)

Average (4.6) (2.0) (7.5) (8.0) (5.8) (7.8) (1.0)

Table 4.7: Static code size comparison for the telecommunications benchmarks. Code sizes are
reported in KBytes. Next to each code size, we present in parenthesis its ratio to the code size for
the DSP architecture by Analog Devices (ADI), where larger means bigger code. We differentiate
between code generated with direct compilation (cc), with significant restructuring of the C code
(cc-opt), and with assembly tuning of important kernels (as). The code sizes for architectures other
than VIRAM are those from official EEMBC reports [Lev00]. The TMS320C6 VLIW architecture
includes several features of DSP architectures [Tru97].

and VLIW architectures require complicated loops to express the necessary permutation patterns.
Finally, the use of vector instructions allows us to eliminate the instructions for maintaining the
loop index and branching in several small loops.

It is interesting to notice that VIRAM produces smaller code than MIPS, the RISC archi-
tecture it is based on. The vector instructions we added to the MIPS architecture function as useful
“macro-instructions” that describe a large number of operations with a 32-bit instruction word.

4.5.4 Basic Block Size

Table 4.8 presents the average basic block size for the multimedia benchmarks. A basic
block is a sequence of instructions that does not include branches, jumps, or other instructions
for control transfer [HP02]. The average basic block size ranges from 4 to 29 instructions with an
average of 14.0. Previous studies for scalar architectures have reported basic block sizes for consumer
and telecommunications benchmarks between 4 and 7 [GRE+01]. There are two reasons for this
difference. Vectorization removes the loops for routines with short vectors, such as 2-D DCT or small
reductions. Hence, the vector code includes fewer branches. In addition, vectorization introduces
extra coprocessor instructions in each basic block for moving scalar values between the scalar and
vector components of a vector processor.

However, the most interesting point of Table 4.8 is the average basic block size in terms of
operations. It represents that average amount of work between two branch instructions. The number
of operations per basic block ranges from 35 for benchmarks with short vector lengths (Cjpeg and
Djpeg) to 1666 for kernels that process long vectors. The average size is 502.1 operations. The large
basic block size implies that the latency of resolving branches is not a critical performance issue for
vector processors. Even if it takes 10 cycles to determine whether a branch is taken in a long vector
pipeline, the cost is amortized over hundreds of vector operations and becomes negligible. Hence, a
vector processor can use a long pipeline and does not require hardware such as branch predictors or
branch target buffers.

On the other hand, a processor that implements a scalar architecture has a very small
number of instructions (operations) between every two branches. Therefore, it must use a rather
short pipeline and include sophisticated branch prediction logic in order to keep the branch latency
and its impact on performance low. Superscalar implementations exacerbate the problem because

35

Basic Block Basic Block Op/Inst
in Instructions in Operations Ratio

Rgb2cmyk 18.0 1666.3 92.6
Rgb2yiq 28.9 1161.1 40.2
Filter 4.0 533.3 133.3
Cjpeg 12.4 35.3 2.8
Djpeg 14.8 45.4 3.1

Autocor 7.6 114.6 15.1
Convenc 3.9 128.9 33.1
Bital 10.7 314.5 29.4
Fft 24.8 903.5 36.4
Viterbi 15.0 117.7 7.8

Average 14.0 502.1 39.4

Table 4.8: The average basic block size for the multimedia benchmarks in VIRAM. The first column
presents the basic block size in terms of instructions. The second column presents the basic block
size in terms of operations. The last column presents the ratio the basic block size in operations to
the size in instructions.

they can execute the few instructions in each basic block faster.

4.5.5 Comparison to SIMD Extensions

Most commercial versions of RISC, CISC, and VLIW architectures have introduced SIMD
extensions for handling the data-level parallelism in multimedia benchmarks [Ric96, SRD96, Phi98,
Int00]. Even though, SIMD extensions are similar to vector instructions, there are significant differ-
ences that limit the benefits of SIMD.

SIMD extensions define short vectors of narrow data within the scalar registers of the
corresponding architectures and a set of instructions to perform arithmetic operations on them.
With 64 to 128 bits per register, a SIMD instruction can operate on up to 4 32-bit elements or up
to 8 16-bit elements [SS01b]. However, Table 4.3 (page 30) shows that the multimedia benchmarks
have significantly higher degrees of data-level parallelism. Even for Cjpeg and Djpeg, vectors of
13 32-bit elements are available. By capturing with each instruction only a small percentage of the
data-level parallelism available, a processor with SIMD extensions must execute a larger number of
instructions than a vector processor. Consequently, the processor with SIMD extensions requires
higher instruction issue bandwidth and consumes more power. In addition, the basic block size
with SIMD extensions is significantly smaller than that with vector instructions, hence sophisticated
branch resolution support is also necessary.

An additional shortcoming of SIMD extensions is the lack of support for accessing vec-
tors in memory. A compiler for SIMD must use scalar load and store instructions to emulate the
functionality of unit stride, strided, and indexed vector accesses. To handle stride, indexing, and
alignment issues, a variety of pack, unpack, rotate, and merge instructions are also necessary. The
overhead of these instructions can often cancel any performance or code size benefits from using
SIMD arithmetic. On the other hand, the load and store instructions in a vector processor handle
strides, indexing, and alignment in hardware. They also encapsulate the memory access pattern and
allow efficient implementation of prefetching hardware.

36

4.6 Evaluation of the VIRAM ISA Decisions

In this section, we use the experience from the EEMBC benchmarks to revisit some of the
basic decisions in the VIRAM instruction set and discuss their effectiveness. It is likely that some of
the following statements could be be somewhat different with another benchmark set. However, we
consider the consumer and telecommunications benchmarks in the EEMBC suite to be representative
of multimedia applications, hence it is meaningful to draw conclusions from them.

The Use of the Coprocessor Model

Defining VIRAM as a coprocessor extension instead of a stand-alone instruction set intro-
duces some overhead due to the instructions that move data between the scalar register files in the
MIPS core and the scalar register files in the vector unit. For the EEMBC benchmarks, however, the
additional move instructions account for less than 6% of the static code size and less than 2.5% of
the dynamic operations count. Hence, the use of the coprocessor model does not have a significant
effect on code size or benchmark performance.

Specifying Data Width with the VPW Register

The use of the VPW control register for specifying the data width for vector operations
reduces by 3 times the number of opcodes necessary for vector instructions when compared to an
ISA that encodes the data width in each instruction word. In addition, the overhead for setting
the VPW register with coprocessor move instructions is negligible. None of the EEMBC benchmarks
could use more than one data width for the various instructions in each loop. Therefore, setting
the VPW once per loop does not create the potential for wasting performance or energy in processor
implementations of the VIRAM architecture.

The Use of Vector Registers

VIRAM defines 32 vector registers. However, only two EEMBC benchmarks, Cjpeg and
Djpeg, reference more than 15 vector registers in their code. Hence, with proper use of the valid and
dirty bits, we have to save less than half of the vector architecture state during context switches of
vector applications. In addition, Cjpeg and Djpeg use rather short vectors with 13 32-bit elements
on the average in the functions for DCT transformations that reference 25 vector registers. If an
implementation can track the maximum vector length used by an application, we can significantly
reduce the amount of vector state involved in context switches for these two benchmarks by only
saving the valid elements in each register. Therefore, despite the large amount of vector state defined
in VIRAM, the actual overhead for context switches of vector applications can be kept low.

The Use of Flag Registers

Only three of the EEMBC benchmarks make use of the support for conditional execution
available in the VIRAM ISA (Cjpeg, Bital, Viterbi). None of these programs references more
than 4 flag registers at any time. Thus, the 16 flag registers defined in VIRAM are more than
sufficient. In addition, the three benchmarks use 3 or less distinct sets of masks per loop iteration
for conditional execution of arithmetic and memory instructions, including the fully set mask for
unconditional execution. Thus, the use of a single bit in each VIRAM opcode to identify one of two
default flag registers as the source of masks for conditional execution is a reasonable compromise
between efficient use of opcode space and ease of use. The overhead for moving up to three sets of
masks in and out of the two default flag registers is small.

37

Shuffling vs. Permutation Instructions

None of the ten benchmarks uses the traditional instructions for shuffling elements in a
vector register (insert, extract, compress, and expand). Hence, from the EEMBC benchmarks
alone, one could conclude that the shuffling instructions are not necessary in a vector architecture for
multimedia. On the other hand, the simpler permutation instructions of VIRAM were instrumental
in vectorizing the reductions in Autocor and Bital, and the butterflies in Fft.

Address Post-increment for Load-Store Instructions

All ten benchmarks use the address post-increment ability of vector load and store instruc-
tions for most of their memory accesses. We could increment the base address register for vector
instructions using coprocessor moves and scalar add instructions. However, specifying the increment
operation with each vector load and store instruction reduces static code size by up to 20% for some
of the smaller benchmarks and helps minimize the overhead of communication over the coprocessor
interface. In addition, address post-increment is easy to use in the compiler.

4.7 Related Work

Although the majority of work on vector architectures has focused on super-computing
environments, certain research groups have investigated their advantages with multimedia applica-
tions.

The T0 extension to the MIPS-II architecture was one of the first vector instruction sets
for multimedia [AJ97]. It has been a strong influence to the VIRAM architecture. Developed for
speech processing applications, T0 provides vector instructions for fixed-point operations on 32-bit
data and supports conditional execution using conditional merges. It does not support multiple
data sizes, element permutations, or running an operating system. The T0 vector microprocessor
implemented the T0 instruction set [WAK+96]. Lee extended the T0 architecture to support vector
floating-point operations for a set of architectural and compiler studies using simulations [SL99].

The popularity of multimedia applications has also motivated researchers to support them
within instruction sets other than vector. SIMD extensions to existing architectures and streaming
instruction sets are the most prominent approaches.

Virtually all RISC, CISC, and VLIW architectures include SIMD extensions for exploiting
sub-word parallelism in multimedia programs [Ric96, SRD96, Phi98, Int00]. Several commercial
processors have implemented the corresponding extensions. Even though there are great differences
in their features, the trend is towards introducing new wide register files for multimedia data and
supporting an ever-increasing variety of operations for both integer and floating-point arithmetic.
We discussed the general disadvantages of SIMD extensions when compared to vector architectures in
Section 4.5.5. Due to their shortcomings and the frequent updates to their features, few compilers can
generate code for SIMD extensions. In addition, several studies have demonstrated that simple vector
processors can outperform complicated out-of-order designs with SIMD extensions for multimedia
by factors larger than 3 [SL99, Asa98].

The MOM matrix instruction set is a proposal for a SIMD variant that supports operations
on fixed-size, two-dimensional arrays of narrow numbers [CVE99]. It has been motivated by video
processing algorithms, where motion estimation operates on 8× 8 or 16× 16 arrays of pixels. MOM
inherits all the deficiencies of SIMD extensions and has limited use outside video processing. It has
never been implemented in a commercial or research chip.

The Imagine stream architecture defines a two-level register file hierarchy with the lower
level associated with each functional unit [RDK+98]. Microcoded instructions configure the oper-
ation executed in each unit and the way functional units are connected. A program executes by
streaming data through the processor and having each unit apply its operation on them. Imagine

38

provides a programmer with flexible control over a large number of register and execution resources
at the cost of complicated programming. To generate code for a stream processor, a compiler must
likely adopt a vector or SIMD approach for modeling the parallelism in the application, and then
map the vector or SIMD operations one the stream hardware. Stream architectures are practi-
cal for specialized accelerators with a separate memory system, but provide limited support for
general-purpose environments running an operating system.

4.8 Summary

In this chapter, we presented the VIRAM instruction set for multimedia processing on
general purpose systems. Vector instructions already provide a compact way to express data-level
parallelism. The additional features required for multimedia applications are support for narrow
data types and fixed-point numbers, instructions for permutations of vector elements, and a method
for conditional execution of element operations. To simplify software development and use with
complex operating systems, the instruction set includes support for virtual memory and semantics
that allow fast context switches.

The instruction level analysis demonstrates that the degree of vectorization for the multi-
media benchmarks with the VIRAM architecture exceeds 90% in most cases. Even for applications
that are partially vectorized and include short vectors such as Cjpeg and Viterbi, the degree of
vectorization is higher than 65%. The code size for VIRAM executables is comparable to that of
the most compact architectural approach in both consumer and telecommunications benchmarks.
VIRAM code is 2 time smaller than code for RISC architectures and up to 10 times smaller than
code for VLIW processors.

In the next two chapters, we will discuss two micro-architectures that implement the VI-
RAM instruction set. Chapter 5 presents a simple micro-architecture with wide functional units,
which uses deep pipelining and embedded DRAM technology. Chapter 6 introduces a composite
and decoupled organization, which is the basis of a scalable family of vector processors.

39

Chapter 5

The Microarchitecture of the

VIRAM-1 Processor

“What we have to learn, we learn by doing it.”

Aristotle

A high-end microprocessor typically relies on high frequency operation in order to deliver
high performance. Consequently, it consumes a large amount of power. Moreover, it requires
hundreds of engineers for a period of three to five years for development, verification, and testing.
This chapter presents the microarchitecture and implementation of VIRAM-1, a processor that
exploits the explicit parallelism expressed by vector instructions to provide high performance at low
energy consumption and reduced design complexity.

Section 5.1 highlights the goals of the VIRAM-1development. In Section 5.2, we present
in details the microarchitecture, focusing mostly on the vector and memory hardware. Section
5.3 describes the implementation methodology that allowed a group of six graduate students to
design VIRAM-1 within an academic environment 1. Section 5.4 presents a performance analysis of
VIRAM-1 for the multimedia benchmarks. Finally, in Section 5.5 we discuss the lessons learned from
the VIRAM-1 development, its basic advantages and some further challenges we need to address.

5.1 Project Background

The motivation for implementing VIRAM-1 was to provide practical experience and realis-
tic insights in developing vector microprocessors for the emerging domain of multimedia processing
in embedded systems. As explained in Chapter 2, the characteristics of this application domain are
significantly different from those of desktop and server systems. Therefore, we embarked on a full
processor implementation in order to provide a convincing proof of concept and expose the whole
spectrum of issues in microarchitecture and design methodology. In addition, a working processor
prototype provides an attractive platform for compiler and software development, which are both
necessary for a complete system demonstration.

The design objectives for VIRAM-1 were directly derived from the project motivation
discussed in Chapters 1 and 2. We aimed at developing a vector processor that provides high
performance for multimedia tasks at low energy consumption. To simplify the software development
of real-time applications, we wanted performance to be predictable and not to rely on probabilistic

1The development of VIRAM-1 was joint work with Joseph Gebis, Samuel Williams under the guidance of David

Patterson and Katherine Yelick at U.C. Berkeley. Hiroyuki Hamasaki, Ioannis Mavroidis, and Iakovos Mavroidis also

made significant contributions to the VIRAM-1 design.

40

techniques such as caching and speculation. An equally important goal was to develop a simple
and scalable design. Unlike superscalar hardware, the vector processor should be easy to build
with a small group of designers and scaling to the next generation implementation should be an
incremental effort, not a complete redesign. Finally, by utilizing the mature compiler technology
for vector architectures, we aimed at developing an efficient processor with a software development
model based on high-level languages and automatic compilation.

To maintain the project focus on the most important goals and simplify the design task,
certain potential features became secondary or were precluded. The performance and energy char-
acteristics of VIRAM-1 rely on architectural and microarchitectural features and not on specialized
circuitry for high clock frequency or low power consumption. We did not engage in advanced cir-
cuitry development because of its complexity and the fact that any performance or power benefits it
introduces are orthogonal to those achieved with architectural methods. We also focused on single
processor systems, providing no special support for shared memory or message-passing in a multi-
processor environment. Finally, we did not integrate a large number of IO interfaces on the same die
with the processor. Even though most embedded processors include a variety of interfaces, pushing
their functionality to an external chip-set allowed for faster prototyping. A future, commercial im-
plementation of the VIRAM-1 microarchitecture could reverse any of these choices with little impact
to the basic characteristics reported in this thesis.

5.2 The VIRAM-1 Organization

The VIRAM-1 microarchitecture [Koz99, KGM+00] relies on two basic technologies: vector
processing and embedded DRAM. Each technology contributes a set of complimentary features
towards meeting the overall design goals.

The vector architecture allows for high performance for multimedia applications by exe-
cuting multiple element operations in parallel. The control logic for parallel execution has reduced
complexity and energy overhead because element operations within a vector instruction are indepen-
dent by definition. In Section 5.3, we also present a modular implementation for vector hardware,
which reduces design complexity and improves scalability.

Embedded DRAM technology enables the integration of a large amount of DRAM memory
on the same die with the processor. It provides the high bandwidth memory system required for a
vector processor [ST92] in a cost effective way. Vector memory instructions can hide long latencies
for element transfers by utilizing high bandwidth for sequential and random accesses. The high
density of embedded DRAM reduces the energy consumption in the memory system by decreasing
or eliminating the number of transfers that must access off-chip memory through high capacitance
board busses. The embedded DRAM memory system can also match the modularity of the vector
processor if organized as a collection of independent banks.

Figure 5.1 shows the overall block diagram for VIRAM-1 with its four basic components:
the MIPS scalar core, the vector coprocessor, the embedded DRAM main memory, and the external
IO interface. We discuss each component in details in the subsequent subsections.

5.2.1 Scalar Core Organization

VIRAM-1 uses the m5Kc scalar core by MIPS Technologies [Hal99a]. It is a single issue,
in-order core with a six-stage pipeline, which implements the MIPS-64 architecture [MIP01]. It
contains 8-KByte, first-level instruction and data caches and a 32-entry TLB. It also includes a
coprocessor interface to which we have attached a floating-point unit for scalar operations on single
precision numbers.

The coprocessor interface is also the only way the scalar core connects to the vector hard-
ware. Consequently, vector instructions cannot access scalar registers in the MIPS core and addi-

41

JTAG

DMA

FPU

Memory Unit TLB

Vector Register File (8KB)

Arith. Unit 1Arith. Unit 0

Flag Register File (256 B)

DRAM 0 DRAM 1 DRAM 7

Flag Unit

C
P

 I
F

Instr. Cache
 (8KB)

 (8KB)
Data Cache

MIPS64
m5Kc Core

Memory Crossbar

. . .
(1.6MB) (1.6MB)(1.6MB)

External
Chipset

Figure 5.1: The block diagram of the VIRAM-1 vector processor.

tional scalar register files are necessary in the vector hardware, as we discussed in Chapter 4. In
addition, the two components cannot share the TLB or the logic for memory instructions. Apart
from saving die area, sharing these resources would also simplify exception processing and memory
consistency for scalar and vector accesses. However, the clear separation of vector and scalar hard-
ware allowed us to start developing the vector hardware long before selecting the specific scalar core.
It also allowed independent verification and testing of the two, which was simpler and faster.

5.2.2 Vector Coprocessor Organization

The vector hardware executes the VIRAM instructions and connects to the MIPS core as
coprocessor 2. An instruction queue decouples the vector coprocessor from the scalar core, allowing
vector execution to proceed even when the scalar core stalls due to cache misses or external interrupts.

Figure 5.1 also shows the internal organization of the vector coprocessor. There are four
functional units, two for arithmetic instructions, one for flag operations, and one for vector load and
store accesses. Arithmetic unit 0 can execute integer, fixed-point, and single-precision float-point
operations. Due to area restrictions, arithmetic unit 1 has neither floating-point hardware nor an
integer multiplier. However, arithmetic unit 1 implements the element permutation instructions.
Each arithmetic unit includes four 64-bit partitioned datapaths, which allows the execution of four
64-bit, or eight 32-bit, or sixteen 16-bit element operations in parallel. In other words, for narrower
data types (VPW), VIRAM-1 can sustain a larger number of operations per cycle.

The memory unit handles vector and flag load or store instructions. On every clock cycle, it
can exchange up to 256 data bits with the memory system. It generates up to four memory addresses
per cycle for strided and indexed accesses. For sequential accesses, a single address is sufficient for
a 256-bit transfer. The memory unit contains a 32-entry TLB, similar to the one in the MIPS core.
Even though the TLB itself has a single access port, it can translate four addresses in parallel using
a four-entry, four-ported micro-TLB, which provides caching for the most frequently accessed TLB
entries. The micro-TLB is controlled by hardware, while software manages any misses or exceptions

42

F RD X M W

VWAG AT DRAM Access Latency

Delay Stages VR VX VW

AG AT VRDelay Stages

Vector Arithmetic Pipe

Vector Load Pipe

Vector Store Pipe

Scalar Pipe

F RD X M W

VWAG AT DRAM Access Latency

VRAG AT

VR VX VW

Scalar Pipe

Vector Load Pipe

Vector Arithmetic Pipe

Vector Store Pipe

Legend:
AG: Address generation stage
AT: Address translation stage
VR: Vector register file read stage

VW: Vector register file write stage
VX: Vector operation execute stage

(A)

(B)

time

timeiterations

vmul
vadd
vld
vmul
vadd
vld

vld

vmul
vadd
vld

������������������

���������
���������
���������
���������

��������������������

���������
���������
���������
���������

	�	�	
	�	�	

�
�

�
�

(B)

������������������
����
����
���������
���������

���������
���������
���������
���������

������������������
������������������

���������
���������
���������
���������

(A)

���������
���������
���������
���������

Legend:
Memory latency

or delay stages

Instruction execution

Pipeline stall

Instruction issue

iterations

vadd
vmul

���������
���������
���������
���������

Figure 5.2: The simple and delayed pipeline models for a vector processor and the corresponding
timings for executing two iterations of a simple vector loop. With the simple model (a), dependen-
cies between memory and arithmetic instructions within a loop lead to long stall periods on every
iteration. The delayed pipeline (b) introduces idle stages in order to match the pipeline length
for arithmetic instructions to that for worst-case memory accesses. In other words, we delay the
execution of arithmetic operations until the necessary data arrive from memory without stalling the
pipeline.

in the main TLB.
The 8-KByte vector register file is at the heart of the coprocessor . It can store 32 64-bit,

or 64 32-bit, or 128 16-bit elements per vector register. The register file should have seven read and
three write ports to provide operands to the arithmetic and memory units. To reduce the area and
energy consumption of the register file by approximately 30%, we used two SRAM banks, each with
four read and three write ports. The first bank stores all the odd numbered 64-bit elements for each
vector, with the second bank holding all even elements. When executing a vector instruction, the
functional units alternate between the two banks on every cycle. If all units try to access the same
bank on the same cycle, we need to stall one of them for one cycle in order to restore conflict free
access to the register file.

5.2.3 Vector Pipeline

VIRAM-1 executes vector operations in a pipelined manner, without any additional startup
overhead for new instructions. On every clock cycle, the control logic pushes a set of element
operations down the pipeline of the proper functional unit. The number of element operations

43

processed concurrently may be 4, 8, or 16, depending on the virtual processor width used at the
time.

The main challenge for the pipeline structure is to tolerate long latencies for load and store
accesses to DRAM memory. A random access to embedded DRAM is pipelined but requires up to
eight clock cycles. Without special support, the pipeline would have to stall for every arithmetic
operation dependent to a memory access. Figure 5.2 presents the delayed pipeline model used in
VIRAM-1 to tolerate DRAM latency. It introduces sufficient pipeline stages to handle the worst-case
memory latency and pads the arithmetic pipelines so that operations execute after any previously
issued loads have fetched the necessary data. Consequently, dependent load and arithmetic oper-
ations can issue to the pipeline back to back without any stall cycles. The pipeline length for all
functional units in VIRAM-1 is 15 stages.

An alternative organization for tolerating memory latency is the decoupled pipeline [EV96].
It uses data and instruction queues to allow memory accesses to execute as soon as possible and elim-
inate unnecessary pipeline stalls. Although the decouple pipeline can tolerate longer latencies than
the delayed one, we chose the latter for VIRAM-1. The delayed pipeline is simple to implement, has
no power and area overhead for queues, and can handle the moderate latency of embedded DRAM. In
Chapter 7, we introduce a vector microarchitecture that implements the decoupled pipeline without
data queues.

5.2.4 Chaining Control

Chaining is the vector equivalent of pipeline forwarding [HP02]. It allows dependent vector
instructions to overlap their execution by forwarding the result of element operations before the
whole instruction completes. As long as dependencies between vector elements are preserved, de-
pendencies between vector registers are relaxed. VIRAM-1 allows instructions executing in different
functional units to chain for all three types of dependencies on vector registers: read-after-write
(RAW), write-after-read (WAR), and write-after-write (WAW). The vector register file implements
the result forwarding without any additional busses. For a RAW case, the second instruction can
read a vector element in the same cycle the previous instruction writes it to the register file.

The implementation of chaining is simple with the delayed pipeline, because it requires
chaining decisions to be made only once per instruction. Before issuing the first set of element
operations for a new instruction, the control logic checks the first few stages in the pipeline of all
functional units for data dependencies with previously issued instructions. The check is distributed,
with every pipeline stage checking for dependencies between the first element operation of the new
instruction and the element operations it holds. Once the first set of element operations can proceed,
it is safe to issue the remaining operations in following clock cycles without checking, because the
pipeline is in-order and preserves any dependencies between the two instructions.

Chaining is not allowed for the four shuffling instruction, because of the complex logic
required to determine dependencies to their element operations. On the other hand, it is easy to
support chaining for the permutation instructions, for which the dependency checks are simple due
to their regularity.

5.2.5 Memory System and IO

The memory system for VIRAM-1 consists of 13 MBytes of embedded DRAM. It serves as
main memory, not a cache, for both vector and scalar accesses. There is no SRAM cache between
the vector coprocessor and DRAM.

We organized the memory system as eight independent DRAM banks. Multiple banks
allow overlapping of transfers for indexed and strided accesses, but introduce some area overhead for
control logic. Eight banks was a reasonable compromise between performance and area efficiency.
The bank design available to us is a monolithic array of 6,656 rows with eight 256-bit columns per

44

row. A column access to a previously open row can occur every one and a half cycles. A random
access that requires opening a new row can take place every five processor cycles. The bank interface
includes separate 256-bit buses for input and output data.

Alternatively, we could organize each DRAM bank as a collection of sub-banks sharing
a single data and control interface. Multiple sub-banks allow overlapping of accesses to different
rows within one bank in a pipelined manner, reducing the number of stalls due to bank conflicts.
Unfortunately, the bank design available for VIRAM-1 did not include sub-banks, resulting to a
performance penalty for applications with indexed and strided accesses [KJG+01]. We will discuss
and evaluate sub-banks and other options for organizing an embedded DRAM memory system in
Chapter 8.

A custom crossbar connects the memory system to the vector and scalar hardware. It can
transfer 256 data bits per direction, load or store, to the eight DRAM banks and issue up to four
memory addresses per cycle. We did not use a simpler bus structure because it would be difficult
to support many concurrent transfers and the large number of configurations required for indexed
and strided accesses. In addition, a bus is difficult to scale up to eight or more banks. On the other
hand, because the memory and the processor are on the same die, it is easy to provide the wiring
and switching resources necessary for the crossbar.

VIRAM-1 has a simple input-output interface that includes a system bus and a DMA
engine. The system bus uses the SysAD protocol [Hei94] and provides connectivity to chipsets
for 64-bit MIPS processors. The chipsets allow VIRAM-1 to connect to off-chip memory and a
variety of peripheral devices such as audio and video interfaces, hard disks, and networking chips.
The DMA includes two channels that can transfer data between the on-chip memory and external
devices without occupying the processor. The DMA capability is important for many multimedia
tasks because it allows fetching the next set of audio samples or video frames to the on-chip memory,
while the application processes the current set [KMK01].

5.2.6 System Support

Virtual memory exceptions on VIRAM-1 are imprecise but restartable. On a vector mem-
ory fault, the delayed pipeline stalls and all stages maintain their state. The scalar core receives
the exception and invokes the proper handler, which can service the exception through a series of
instructions that manipulate the vector TLB. When the exception condition has been removed, the
pipeline is released and vector execution continues from the point it was interrupted. If the handler
decides to preempt the application currently running, it must also save the state of the first three
stages of the delayed pipeline. When the application resumes, the handler must restore the pipeline
state during the context switch. The original implementation of the Alpha architecture also used im-
precise exceptions with saving and restoring of microarchitecture state for floating-point operations
[Sit92, Dig96].

As discussed in Chapter 4, VIRAM-1 maintains dirty and valid bits for vector registers
and tracks the maximum vector length used by an application in order to reduce the context switch
time. It also allows marking the vector coprocessor unusable after a context switch in order to avoid
saving and restoring vector state when switching to short handlers or applications without vector
instructions. Moreover, the instruction queue that decouples the scalar core from the coprocessor
allows vector hardware to proceed with the instructions it has received while the MIPS core executes
an interrupt handler. Because vector instructions specify a large number of element operations, small
IO handlers can run on the scalar core without underutilizing the vector coprocessor.

Special support is also available for maintaining memory consistency between the scalar
and vector memory accesses. Because the two components have separate paths to memory, a scalar
access can reach DRAM before a previously issued vector access to the same address. To assist
compilers with preventing errors due to such cases, VIRAM-1 provides a set of synchronization
instructions that can stall the whole processor until all currently issued accesses have completed. To

45

Arith. Unit 0
Datapath

Elements
Vector Register

Datapath

Datapath

Flag Elements
 &Datapath

Memory

Elements

Interface

 &Datapath

Interface

Arith. Unit 0 Arith. Unit 0

Arith. Unit 1

Elements
Vector Register

Arith. Unit 1
Datapath

Flag Elements
 &Datapath

Interface
Memory

Flag Elements

Datapath
Arith. Unit 1

Memory

Vector Register

Datapath
Arith. Unit 0

Datapath

Elements
Vector Register

Arith. Unit 1
Datapath

Flag Elements
 &Datapath

Interface
Memory

Vector Register File

LANE 0 LANE 1 LANE 2 LANE 3

Arithmetic Unit 1

Flag Register File

Memory Unit

 & Flag Unit

Arithmetic Unit 0

Figure 5.3: The vector datapath and register file resources of VIRAM-1 organized in four vector
lanes. Functional units span across the design by contributing one 64-bit datapath to each lane.
The elements of each vector register are assigned to lanes in an interleaved fashion. Two 64-bit,
inter-lane busses are necessary to implement the permutation instructions for reductions and FFTs.

reduce the overhead, we support variations that wait only for a specific type of accesses to complete
(vector or scalar, load or store). On vector stores, we also check to the data cache of the scalar core
for data from the same address and invalidate them if present. To avoid unnecessary cache stalls
due invalidation traffic, we maintain a duplicate set of tags for the invalidation checks.

5.3 The VIRAM-1 Implementation

VIRAM-1 includes a large amount of hardware resources, which typically means high design
complexity and long interconnects within the chip. In this section, we present the design approach
and methodology that organizes hardware in a modular fashion and leads to locality of interconnect.

5.3.1 Scalable Design Using Vector Lanes

Figure 5.3 presents the implementation of the vector coprocessor using four parallel lanes.
Each lane contains a 64-bit datapath from each functional unit, a 64-bit interface to the memory
crossbar, and a vertical partition of the two banks for the vector register file. All lanes are identical
and receive the same control on every cycle. To execute a vector instruction, the datapaths in each
lane operate on the elements stored in the local partition of the register file. Therefore, most vector
instructions can execute without any data communication between lanes.

The use of lanes makes the vector coprocessor modular. We only need to design and verify a
single 64-bit block and replicate it four times, which is simpler than implementing a separate 256-bit
blocks for each functional unit and interconnecting them later. We can also scale the performance,
area, and energy consumption of the coprocessor without significant redesign by allocating the proper
number of lanes. A single design database can produce a number of coprocessor implementations,
with a large or small number of lanes. All implementations are balanced in terms of hardware
resources as each lane contributes both execution datapaths and storage for vector elements.

Lanes also allow us to trade-off die area for reduced power consumption [KJG+01, BCS93].
Increasing the number of lanes allows for a proportional decrease in the clock frequency and power
supply without changing the peak computational throughput of the system. Because power consump-
tion is an exponential function of power supply voltage but only a linear function of the switching

46

Technology IBM SA-27E 0.18µ CMOS Process
6 metal layers (copper)
deep trench DRAM cell (0.56µm2)

Area 318.5 mm2 (17.5mm x 18.2mm)
Transistors 120 million (7.5 logic, 112.5 DRAM)
Clock Frequency 200 MHz
Power Supply 1.2V logic, 1.8V DRAM, 3.3V IO
Power 2 Watt (average)
Consumption (vector 1 Watt, scalar 0.5Watt, DRAM 0.5Watt)
Package 304-pin quad ceramic package
Peak Integer: 1.6/3.2/6.4 Gops/second (64-bit/32-bit/16-bit)
Performance Fixed-point: 2.4/4.8/9.6 Gops/second (64-bit/32-bit/16-bit)

Floating-point: 1.6 Gflops/second (32-bit)

Table 5.1: The chip statistics for VIRAM-1. Peak performance for integer and fixed-point operations
indicates the maximum operation throughput for the three supported virtual processor widths (64-
bit, 32-bit, 16-bit). Fixed-point performance ratings assume two operations per multiply-add. One
Gop and one Gflop are 109 integer and floating-point operations respectively.

capacitance of the circuits, the new processor with more lanes and lower clock frequency consumes
less power than the original design. Hence, we can exploit the shrinking geometries in CMOS
technology to introduce more lanes and reduce power consumption without hurting performance.

Furthermore, the ability to integrate additional lanes with future semiconductor processes
does not create long interconnect wires that could limit performance. Excluding memory and permu-
tation instructions, all other instructions require no inter-lane communication during their execution.
Most wires are limited within each lane and are short, regardless of the size of the overall processor.
Hence, the increasing delay of cross-chip wires is not a significant scaling problem for the vector
coprocessor. For the long wires needed for memory transfers and permutations, pipelining is an
appropriate solution because a vector processor can tolerate latency as long as high bandwidth is
available.

5.3.2 Design Statistics

We designed VIRAM-1 in a 0.18µm bulk CMOS process with embedded DRAM. Table 5.1
summarizes its design statistics. The die occupies 17.5x18.2mm2 and includes approximately 120
million transistors. It is designed to operate at 200 MHz, a conservative clock frequency for this
technology, in order to simplify circuit design and decrease energy and power consumption. However,
it can support up to 6.4 billion operations per second for 32-bit integer numbers by executing element
operations in parallel on the four vector lanes. The average power consumption is 2 Watts, but the
use of low power circuitry and a reduced power supply for the DRAM could drop it to less than
1 Watt in more aggressive implementations. Nevertheless, at 3.2 billion operations per second per
Watt, VIRAM-1 is an order of magnitude better in power-performance than most high performance
processors in 2002 [JYK+00, Wor01, Emb01].

Figure 5.4 presents the VIRAM-1 chip floorplan. It illustrates the overall design modularity
as it consists of four lanes and eight memory banks. Apart from its benefits to design complexity and
scalability, modularity is also good for improving yield. A modular vector processor can include an
additional vector lane or DRAM bank for redundancy. Alternatively, a chip with permanent defects
on some lane or memory bank can still function and be useful as a lower performance or lower
capacity part. Table 5.2 presents the area breakdown for the chip. It indicates that the majority of

47

VECTOR
LANE

VECTOR
LANE

VECTOR
LANE

VECTOR
LANE

IO&FPU

DRAM

BANK

DRAM

BANK

DRAM

BANK

DRAM

BANK

DRAM

BANK

DRAM

BANK

DRAM

BANK

DRAM

BANK

CONTROL

VECTOR

MEMORY CROSSBAR

MEMORY CROSSBAR

MIPS

Figure 5.4: The floorplan of the VIRAM-1 processor. To fit in a square die, the DRAM banks are
organized in two groups of four, with a copy of the crossbar to connect each group to the scalar and
vector hardware. All blocks are drawn to scale. The total die area is 318.5mm2.

the area implements hardware components directly controlled by software: main memory, register
arrays, execution datapaths. By issuing proper arithmetic and memory instructions, software can
control their use and even turn them off to save energy, when their functionality is not necessary.
In contrast, superscalar processors devote more than half of their die area for resources transparent
to software such as caches and speculation logic [PJS96].

5.3.3 Design Methodology

Table 5.3 presents the design methodology statistics for VIRAM-1. To reduce development
time and maximize the functionality supported, VIRAM-1 includes intellectual property from four
sources. The use of simple and standard interfaces, such as the MIPS coprocessor interface, was a
key factor to integrating them successfully. We also tried to avoid full custom circuit development as
much as possible. We synthesized most of the logic from RTL description and used macro compilers
for the SRAM arrays in the MIPS caches and the scalar register files. Only the vector register file
banks and the memory crossbar were implemented using full-custom techniques, since their function
could not be synthesized efficiently. The full custom logic accounts for 7.4% of the total die area
(see Table 5.2).

We verified the functionality of the original RTL description and the synthesized circuits
using a combination of directed and random tests. Directed tests allowed us to quickly correct most
design errors, but random tests were necessary to remove the last few bugs and increase our overall
confidence. The testing methodology and the infrastructure that allowed us to reuse test code
on a number of simulators and design blocks are described in [Wil02]. Compared to superscalar
processors, the verification of VIRAM-1 was much simpler due to its overall design modularity and
its lack of complex logic structures for out-of-order or speculative execution.

In retrospect, it was the modular and simple microarchitecture of VIRAM-1 that made its

48

Component Area (mm2) % Area Design

Scalar Core 12.25 3.8% Synthesized
Vector Control 11.40 3.6% Synthesized
Vector Lane (4x) 9.90 12.4%

Arithmetic Unit 0 4.06 Synthesized
Arithmetic Unit 1 1.08 Synthesized

Memory Unit 1.18 Synthesized
Flag Unit & Registers 1.06 Synthesized

Vector Register File 2.31 Full Custom
Miscellaneous 0.21 Synthesized

Crossbar (2x) 7.20 4.5% Full Custom
FPU 2.10 0.7% Synthesized
IO 1.40 0.4% Synthesized
DRAM Bank (8x) 16.90 42.4% Macro block
Pad Ring 35.70 11.2%
PLL, Decoupling Capacitors, Guard Ring 66.5 21.0%

Total Area 318.5 100%

Table 5.2: The area breakdown for VIRAM-1. The scalar core area includes the first level instruc-
tion and data caches. The vector control area includes the vector TLB and the replica tags for
invalidations in the scalar core data cache. The second column represents the area occupied by each
component as a percentage (%) of the total die area. The last column presents the design technique
used for each logic or memory block: synthesized (standard cells), full custom, or automatically
generated macro blocks.

development possible with the available man-power. It allowed us to quickly scale the design when
the area budget changed. We could also easily experiment with a number of alternatives when we
encountered a CAD tool bug or limitation. The small design team made it easier to communicate
changes or issues and adapt to them fast.

Naturally, certain design decisions were not necessarily optimal. Eliminating all need for full
custom circuits, for example, could have saved us a lot of time and the need to struggle with a mixed
synthesized-custom design flow. We could assemble the register file partition in each vector lane from
four 3-ported SRAM macro-blocks from IBM for approximately the same area. However, such a
register file design would prohibit the implementation of the fixed-point multiply-add instruction.
It would also have a negative impact on overall performance due to the higher probability of bank
conflicts between vector instructions during their register file accesses for source and destination
operands. We could also replace the full-custom crossbar with a simpler circular ring topology
that is easier to implement using synthesized logic. Since the actual layout for both approaches is
limited mostly by wire density, the area requirements should be nearly identical. However, the ring
interconnect would add 4 clock cycles to the latency of every memory access. Due to the nature
of the delayed pipeline, the higher memory latency could lead to significant performance loss for
applications with reductions (Autocor and Bital), short vectors (Cjpeg, Djpeg, and Viterbi), or
low ratio of arithmetic to memory operations (Rgb2cmyk and Autocor).

5.4 Performance Evaluation

In this section, we analyze the performance of VIRAM-1 for the multimedia benchmarks in
the EEMBC suite. We also compare VIRAM-1 to a number of embedded processors that implement

49

Design Synthesized: scalar core, vector control, vector datapaths, IO
Methodology Full-custom: vector register file, memory crossbar

Macro-blocks: DRAM banks, SRAMs
IP UC Berkeley (vector coprocessor, crossbar, IO)
Sources MIPS Technologies (MIPS Core)

IBM (DRAM, SRAMs)
MIT (original floating-point datapath design)

RTL Model 170K lines Verilog
Verification 566K lines directed tests (10M lines assembly)

4 months of random testing on 20 Linux workstations
Design Team 3 full-time graduate students

3 part-time graduate students and staff
Design Time 2.5 years

Table 5.3: The design methodology statistics for VIRAM-1.

alternative architectures such as CISC, RISC, VLIW, and DSP.
We measured the performance of VIRAM-1 using an execution-based simulator that pro-

vides near cycle-accurate modeling of the chip microarchitecture with a variable number of lanes.
The simulator models all sources of stalls excluding DRAM refresh. However, refresh accesses to
DRAM banks are periodic events with low frequency. In addition, the memory unit in the vector
coprocessor has direct control of refresh and attempts to schedule refresh accesses to each bank
during idle cycles. Hence, the practical impact of DRAM refresh on performance is negligible.

5.4.1 Performance of Compiled Code

Before we proceed with the performance evaluation, it is interesting to examine the quality
of the code produced by the VIRAM compiler in terms of performance and compare it with code
optimized in assembly. By taking a close look at the output of our research compiler, we can notice
the following deficiencies:

1. Our compiler cannot always schedule the code within a basic block so that dependent instruc-
tions are separated by at least one independent instruction. This increases the probability that
a register dependency will cause stall cycles in the in-order (statically scheduled) pipeline of
VIRAM-1.

2. The code schedule does not attempt to alternate instructions to the four functional units in
VIRAM-1. This leads to unbalanced workload for the functional units. Some of the functional
units may be idling for long time periods despite the existence of independent instruction later
in the program that they could execute.

3. Our compiler cannot move the code for calculating loop invariants out of the loop body (code
motion). This causes unnecessary repetition of calculations.

4. Our compiler frequently generates spill code for kernels that use more than 8 vector registers,
even if less than 32 registers are necessary. Spill code causes unnecessary memory traffic and
increases the workload of the memory unit in VIRAM-1.

5. The MIPS scalar code quality is low both in terms of density and scheduling.

It is interesting to notice that none of the compiler shortcomings are related to vectorization, the
most challenging part of generating code for a vector processor.

50

2.2
1.9

11.1

1.6
1.3

1.7

6.2

3.7

5.7

0

2

4

6

8

10

12

Rgbcmyk Rgbyiq Filter Cjpeg Djpeg Autocor Convenc Bital Viterbi

S
p

ee
d

u
p

 w
it

h
 A

ss
em

b
ly

 T
u

n
in

g

Figure 5.5: The performance speedup for VIRAM-1 after manually tuning the basic kernels of
each benchmark in assembly. In each case, we present the ratio of performance achieved with the
optimized code over that achieve with the original compiled code. A ratio larger than 1 implies
higher performance with assembly code. We do not present the speedup for Fft because we can
only vectorize this benchmark in assembly. For a comparison of code sizes for the two approaches,
refer to Tables 4.6 (page 33) and 4.7 (page 34).

To evaluate the performance cost of the compiler shortcomings, we used assembly pro-
gramming to remove the first four deficiencies from the basic kernels in each benchmark. Figure 5.5
presents the performance improvement for VIRAM-1 when running code tuned in assembly instead
of the original compiler code. The speedup varies between 1.6 and 11, depending on the benchmark.
The effect of assembly tuning is most obvious for applications with mostly unit stride accesses, such as
Filter and Convenc. For benchmarks with many strided accesses such as Rgb2cmyk and Rgb2yiq,
performance is limited by the address generation bandwidth of the memory unit in VIRAM-1, hence
the effect of assembly tuning is less profound. The same holds for benchmarks with large percentage
of scalar operations such as Cjpeg and Djpeg, where scalar optimizations are also necessary in order
to achieve higher speedup with tuned code.

During assembly tuning, we applied code scheduling only within each basic block. We did
not apply loop unrolling or software pipelining. These techniques require major code restructuring
and would not introduce more than 10% performance improvement. As we demonstrate in the fol-
lowing sub-sections, VIRAM-1 can reach high levels of performance even without such optimizations.
In addition, loop unrolling and software pipelining lead to significant increases in static code size
(see Section 4.5).

Overall, the quality of the code produced by the VIRAM-1 compiler is satisfactory for a
research project. The compiler can handle vectorization which is the most critical optimization for
this architecture. However, the optimizations we applied during assembly tuning are straight-forward
and are typically available in most industrial compilers. Hence, the VIRAM-1 results with code tuned
in assembly are good indications of the performance potential for commercial implementations of
the VIRAM-1 microarchitecture and its compiler.

5.4.2 Performance Comparison

To better understand the performance advantages of VIRAM-1, we compare it to six em-
bedded processors that implement alternative architectures. Table 5.4 presents their basic charac-

51

Processor Vendor Architecture Clock Issue Cache Size Power
Freq. Width L1I/L1D/L2

K6-III+ AMD CISC (x86) 550MHz 2 (6) 32K/ 32K/256K 21.6W
MPC7455 Motorola RISC (PowerPC) 1000MHz 4 32K/ 32K/256K 21.3W
VR5000 NEC RISC (MIPS) 250MHz 2 32K/ 32K/— 12.1W
TM1300 Trimedia VLIW+SIMD 166MHz 5 32K/ 16K/— 2.7W
C6203 TI VLIW+DSP 300MHz 8 96K/512K/— 1.7W
21065L ADI DSP 60MHz 1 0.2K/—/ 68K 1.5W

Table 5.4: The characteristics of the six embedded processors used for performance comparisons
with VIRAM-1. K6-III+ and MPC7455 use out-of-order execution. K6-III+ can decode 2 CISC
instruction per cycle to sequences of simpler operations. It can execute up to 6 simpler operations per
cycle. All cache sizes are in KBytes and refer to on-chip SRAMs. 21065L includes a 68KByte SRAM
that serves as both second-level instruction cache and primary data cache. The power consumption
numbers refer to typical usage and are derived from vendor data-sheets.

teristics. The selected group includes a variety of design points not only in terms of the underlying
architecture (CISC, RISC, VLIW, and DSP), but also in terms of clock frequency, issue width, power
consumption, and execution style (in-order, out-of-order). However, all processors rely on SRAM
caches for fast memory accesses.

We retrieved the performance results for the six processors from the corresponding EEMBC
reports [Lev00]. Results for the consumer benchmarks are not available for C6203 and 21065L.
Results for the telecommunications benchmarks are not available for TM1300. For the two VLIW
processors (TM1300 and C6203), we report separately the performance level achieved with direct
compilation (cc) and after extensive optimization of the C code (opt). Similarly, for VIRAM-1 we
report separately performance with compiled code (cc) and with code optimized in assembly (as).

Figure 5.6 presents the ConsumerMark and TeleMark composite scores for VIRAM-1 and
the six embedded processors. Running compiled code, VIRAM-1 outperforms all processors ex-
cluding MPC7455, a 1GHz, 4-way superscalar, out-of-order design, and the two VLIW processors
(TM1300 and C2603) when running optimized code. The use of code optimized in assembly allows
VIRAM-1 to achieve scores at least 70% and 40% higher than any other processor for the consumer
and telecommunications categories respectively.

Figures 5.7 and 5.8 present the individual benchmark scores. The performance advantage of
VIRAM-1 is more noticeable for benchmarks with long vectors, such as Rgb2cmyk, Rgb2yiq, Filter,
Autocor, Convenc, and Fft. Each vector instruction in these benchmarks can keep the parallel
datapaths across the four lanes busy for multiple clock cycles, which leads to high performance. For
Rgb2cmyk and Rgb2yiq, VIRAM-1 uses the four address generators in the memory unit to load or
store four element per cycles for strided accesses. Despite the lack of SRAM caches for vector memory
references, the high memory bandwidth of embedded DRAM and the delayed vector pipeline lead
to high performance for memory accesses.

For Bital, the performance of VIRAM is limited by the reduction in each iteration of the
outer-loop, which detects the termination condition for the benchmark. The code for reductions fails
to utilize all vector lanes during its last stages. It also exposes the length of the delayed pipeline,
because its result must be sent to the scalar core, where the termination condition is checked. Still,
the performance of VIRAM-1 for Bital with compiled code is equal to that of K6-II+. With
optimized code for Bital, VIRAM-1 can match the performance of MPC7455.

Despite the lack of long vectors, the performance of VIRAM-1 for Viterbi is comparable
to the highest scores achieved by other processors. Instruction with short vectors can keep the four
lanes busy for only one or two clock cycles. With instruction issue bandwidth of one instruction

52

81.2

201.4

34.2

122.6

14.5
23.3

110.0

0

50

100

150

200

250

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

C
o

n
su

m
er

M
ar

k
S

co
re

12.4

61.7

8.7

27.2

2.0
6.8

44.6

1.1
0

20

40

60

80

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

T
el

eM
ar

k
S

co
re

Figure 5.6: Comparison of the composite scores for the consumer and telecommunications categories
in the EEMBC suite. Each composite score is proportional to the geometric mean of the performance
(iterations per second) achieved by each processor for the benchmarks in the corresponding category.
A higher score indicates higher performance.

per cycle, short vectors translate to low utilization of the functional units in the vector coprocessor.
The other two benchmarks with short vectors are Cjpeg and Djpeg, for which the scalar code
overhead dominates all other performance bottlenecks. The scalar code for Huffman coding in
both benchmarks accounts for approximately 70% of execution time. The high overhead for scalar
operations is because of the lower degree of vectorization for Cjpeg and Djpeg (65%) and the poor
quality of scalar code produced by the VIRAM-1 compiler.

Figures 5.9 and 5.10 report the same benchmark scores normalized by the clock frequency
of each processor. Normalization allows us isolate the contributions of architectural and microar-
chitectural features to performance from the benefits of advanced circuit design. It is worthwhile to
notice the normalized performance of MPC7455 is significantly lower than that of VIRAM-1 running
compiled code. Despite its four-way superscalar issue and out-of-order capabilities, MPC7455 relies
mostly on high frequency operation (1GHz). However, high clock frequency also leads to high power
consumption (21W). VIRAM-1 can achieve higher performance at low power consumption through
parallel execution of element operations. In addition, VIRAM-1 is in-order and single-issue. Hence,
assuming equal design efforts, it should be possible to achieve higher clock frequencies for VIRAM-1
than MPC7455.

The main architectural competition for VIRAM-1 is from the two VLIW designs, TM1300

53

Rgbcmyk

0

400

800

1200

1600

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

se
co

n
d

Rgbyiq

0

400

800

1200

1600

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

se
co

n
d

Filter

0

2000

4000

6000

8000

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

se
co

n
d

Cjpeg

0

20

40

60

80

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

se
co

n
d

Djpeg

0

20

40

60

80

100

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

se
co

n
d

Figure 5.7: Detailed performance comparison between VIRAM-1 and four embedded processors for
the consumer benchmarks. Scores are in iterations per second and a higher score indicates higher
performance.

54

Autocor

0

10000

20000

30000

40000

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

se
co

n
d

Convenc

0

100000

200000

300000

400000

500000

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

se
co

n
d

Bital

0

2000

4000

6000

8000

10000

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

se
co

n
d

Fft

0

40000

80000

120000

160000

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

se
co

n
d

Viterbi

0

2000

4000

6000

8000

10000

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

se
co

n
d

Figure 5.8: Detailed performance comparison between VIRAM-1 and five embedded processors for
the telecommunications benchmarks. Scores are in iterations per second and a higher score indicates
higher performance. The VIRAM-1 performance for Fft is only available for assembly code.

55

Rgbcmyk

0

2

4

6

8

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

M
C

yc
le

s

Rgbyiq

0

2

4

6

8

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

M
C

yc
le

s
Filter

0

10

20

30

40

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

M
C

yc
le

s

Cjpeg

0

0.1

0.2

0.3

0.4

0.5

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

M
C

yc
le

s

Djpeg

0

0.1

0.2

0.3

0.4

0.5

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 TM1300
(cc)

TM1300
(opt)

It
er

at
io

n
s/

M
C

yc
le

s

Figure 5.9: Normalized performance comparison between VIRAM-1 and four embedded processors
for the consumer benchmarks. Scores are in iterations per million cycles and a higher score indicates
higher performance. There scores were derived by normalizing the scores in Figure 5.7 by the clock
frequency of each processor.

56

Autocor

0

50

100

150

200

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

M
C

yc
le

s

Convenc

0

500

1000

1500

2000

2500

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

M
C

yc
le

s

Bital

0

10

20

30

40

50

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

M
C

yc
le

s

Fft

0

200

400

600

800

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

M
C

yc
le

s

Viterbi

0

10

20

30

40

50

VIRAM-1
(cc)

VIRAM-1
(as)

K6-III+ MPC7455 VR5000 C6203
(cc)

C6203
(opt)

20165L

It
er

at
io

n
s/

M
C

yc
le

s

Figure 5.10: Normalized performance comparison between VIRAM-1 and five embedded processors
for the telecommunications benchmarks. Scores are in iterations per million cycles and a higher
score indicates higher performance. There scores were derived by normalizing the scores in Figure
5.8 by the clock frequency of each processor. The VIRAM-1 performance for Fft is only available
for assembly code.

57

0

2

4

6

8

Rgbcmyk Rgbyiq Filter Cjpeg Djpeg

S
p

ee
d

u
p

1 Lane 2 Lanes 4 Lanes 8 Lanes

0

2

4

6

8

Autocor Convenc Bital Fft Viterbi

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Figure 5.11: The speedup of multi-lane implementations of the VIRAM-1 microarchitecture over a
processor with a single lane. For each configuration we set the number of address generators in the
memory unit equal to the number of lanes.

and C6203. VIRAM-1 outperforms both processors by at least a factor of 2 when they all run
compiled code. The same holds with optimized code for all three processors. Of course, restructuring
of C code is easier than tuning in assembly. However, the optimization capabilities missing from the
VIRAM-1 compiler are straight-forward and have been available for years in commercial compilers.
On the other hand, efficient compilation for VLIW processors is a relatively new area for industrial
compilers. Hence, it is reasonable to expect that a vector compiler will be able to match the
performance of assembly code on VIRAM-1 long before a VLIW compiler can eliminate the need
for restructuring of C code in order to achieve high performance with VLIW architectures.

5.4.3 Performance Scaling

One of the most interesting features of the VIRAM-1 microarchitecture is the ability to
easily scale its performance, area, and energy consumption by allocating the proper number of vector
lanes. Figure 5.11 presents the effect of the number of lanes on the performance for each consumer
and telecommunications benchmark. To simplify the charts, we present performance as speedup
over a VIRAM-1 configuration with a single lane. Ideally, the speedup with 2, 4, and 8 lanes is 2, 4,
and 8 respectively.

Only two benchmarks, Rgb2cmykand Fft, come close to the ideal speedup in all cases.
The performance for other benchmarks with long vectors scales well for up to four lanes (Rgb2yiq,
Filter, and Convenc). With 8 lanes, however, the number of cycles it takes to execute a vector
instruction at maximum vector length is only 4 cycles. Hence, the overhead introduced by scalar

58

83.9

134.3

201.4

271.3

0

70

140

210

280

350

1�Lane 2�Lanes 4�Lanes 8�Lanes

C
o

n
su

m
er

M
ar

k�
S

co
re

23.7

40.8

61.7

85.5

0

20

40

60

80

100

1�Lane 2�Lanes 4�Lanes 8�Lanes

T
el

eM
ar

k�
S

co
re

Figure 5.12: The composite scores for the consumer and telecommunications benchmarks for
VIRAM-1 as a function of the number of lanes. The results represent performance achieved us-
ing VIRAM code tuned with assembly programming.

code, inefficiencies in scheduling, and stalls due to RAW hazards becomes much more significant
than with four or less lanes. With benchmarks that include dot-products such as Autocor and
Bital, the benefit of additional lanes is limited by the fact that the last few stages of a reduction
cannot use datapaths across all lanes. Finally, the number of lanes has limited effect on benchmarks
with very short vectors or high scalar overhead, such as Cjpeg, Djpeg, and Viterbi.

Figure 5.12 presents the composite scores of VIRAM-1 as a function of the number of lanes.
For both benchmark categories, the use of a second lane leads to 75% performance improvement. The
two subsequent doublings of the numbers of lane lead to 55% and 40% improvement respectively. It
is also interesting to compare the scores in Figure 5.12 with the results in Figure 5.6 (page 52). Even
with one or two lanes, VIRAM-1 running at 200 MHz can achieve performance scores comparable
or better than complex out-of-order and VLIW designs running at higher clock frequencies.

5.5 Lessons from VIRAM-1

VIRAM-1 demonstrates the feasibility of using vector processing with embedded DRAM
for multimedia applications in embedded systems. The microarchitecture is simple but possesses a
set of key properties that lead to performance and energy efficiency:

• Vector processing provides flexibility in architecting efficient processors. We achieve
high performance by relying on concurrent execution of element operations on parallel dat-
apaths. The fact that high clock frequency is not necessary simplifies design and reduces
energy consumption. Furthermore, we can trade off area for reduced power consumption. Vec-
tor processing provides this flexibility without complex control structures for speculation or
out-of-order execution.

• Vector lanes are an efficient method for exploiting parallelism in the form of long
vectors. Even though a single lane has simple structure and is easy to design, multiple
operations can execute concurrently across parallel lanes. No additional instruction issue
bandwidth and virtually no change in control logic are necessary for more lanes, assuming
instructions specify a large number of element operations.

• High memory bandwidth can lead to high performance. VIRAM-1 uses the high band-
width available from embedded DRAM to maintain a high throughput of element operations
on its parallel datapaths. Both sequential and random access bandwidth are necessary to meet
the requirements of the three addressing modes for vector loads and stores.

59

• Both the processor and the memory system are modular and use a small number
of replicated hardware blocks. We can generate multiple processor implementations for
a variety of performance, area, and energy requirements by mixing and matching the proper
number of vector lanes and memory banks. Instead of a complete chip redesign, we only need
to focus on the top-level interconnect in each case.

Nevertheless, prototyping VIRAM-1 also revealed certain inefficiencies that we did not
initially anticipate. Most of the issues do not affect the effectiveness of the VIRAM-1 chip, but limit
the potential of its microarchitecture with future processor implementations:

• Vector lanes are not efficient with short vectors. To keep the instruction issue require-
ments low, a vector instruction should keep a functional unit busy for more than four cycles.
Vector instructions with only 8 to 16 element operations, which are frequent in image and
video processing, cannot make effective use of a processor with four or more lanes.

• The complexity of the vector register file is a bottleneck for exploiting non-
vectorizable parallelism. For applications with short vectors, we can organize additional
hardware resources in the form of more functional units within each lane. Using chaining,
each functional unit can execute another vector instruction in parallel, even in the presence of
dependencies. However, each functional unit requires a set of read and write ports in the vector
register file. The area, energy consumption, and latency of the register file are exponential
functions of the number of access ports. Therefore, the vector register file becomes the major
bottleneck to executing more vector instructions in parallel within each vector lane.

• The delayed pipeline is not efficient with memory latency larger than that for
VIRAM-1. The low clock frequency of VIRAM-1 and the moderate latency of the embedded
DRAM macro it uses, allows the delay pipeline to hide memory latency. However, a higher
latency would translate to a longer pipeline with a larger area and power cost, and higher
overhead for filling and draining between vector loops or functions. Hence, if we use the same
microarchitecture with a slower memory system or with a higher clock frequency target for the
processor, a significant performance drop will occur. In addition, introducing the additional
pipeline stages requires non-trivial redesign.

• Imprecise virtual memory exceptions complicate software development. Restartable,
imprecise exceptions with saving and restoring of microarchitecture state are sufficient for cor-
rect operation of virtual memory, but are cumbersome to use and often discourage software
and operating system development. Supporting precise memory exceptions with the VIRAM-1
microarchitecture would require stalling all other functional units when a memory instruction
executes and would reduce performance to unacceptable levels.

In the following chapters, we introduce an alternative vector microarchitecture for em-
bedded media-processors. The new design builds on the experience of VIRAM-1 and addresses its
shortcomings while maintaining its basic advantages.

60

Chapter 6

A New Vector Microarchitecture

for Multimedia Execution

“The significant problems we face cannot be solved at the

same level of thinking we were at when we created them.”

Albert Einstein

Although VIRAM-1 provides a modular organization for a complete vector processor in-
tegrated with its memory system, it is inefficient for applications with short vectors and cannot
scale to a larger number of functional units. This chapter presents CODE (composite organization
for decoupled execution), a new microarchitecture for the VIRAM instruction set that overcomes
the limitations of VIRAM-1. It provides two orthogonal methods for organizing vector hardware in
order to exploit data-level parallelism in both long and short vectors. The CODE microarchitecture
establishes the basis for a family of vector microprocessors tailored to the performance, power, and
cost requirements of specific application domains.

Section 6.1 introduces the two basic elements of CODE and discusses their benefits. Section
6.2 provides a detailed description of the microarchitecture components for execution, memory ac-
cess, data communication, and instruction issue. Section 6.3 presents a number of issue and control
policies along with a set of instruction execution examples. Section 6.4 discusses the benefits from
multi-lane implementations of the CODE microarchitecture. Sections 6.5 and 6.6 compare CODE to
the VIRAM-1 microarchitecture and organizations for out-of-order execution respectively. Section
6.7 describes an experimental study for tuning the basic microarchitecture policies. Finally, section
6.8 reviews related work in academic and commercial microarchitectures.

6.1 Basic Design Approach

The CODE microarchitecture takes its name from the two basic ideas it combines: com-
posite organization and decoupled execution. The two techniques replace the centralized register file
and the delayed pipeline of VIRAM-1.

6.1.1 Composite Vector Organization

VIRAM-1 structures the vector coprocessor around a centralized vector register file that
provides operands to all functional units and connects them to each other. In contrast, the composite
approach organizes vector hardware as a collection of interconnected cores. Each core is a simple
vector processor with a set of local vector registers and one functional unit. Each core can execute

61

only a subset of the instruction set. For example, one vector core may be able to execute all integer
arithmetic instructions, while another core handles vector load and store operations.

The composite organization breaks up the centralized vector register file into a distributed
structure. It uses renaming logic to map the vector registers defined in the VIRAM architecture to
the distributed register file. The local vector register file within each core must only support one
functional unit and has a fixed and small number of access ports. Therefore, the local vector register
files are simple to implement without having to resort to complicated full-custom design techniques.
Furthermore, associating a local register file with each core establishes a balance between the number
of functional units and the number of vector registers. Registers provide short-term storage for the
operands of functional units, hence the total number of registers in a processor must be roughly
proportional to the number of functional units it includes [RDKM00]. In Section 6.6, we analyze the
area, access latency, and energy consumption advantages of the distributed register file structure.

Another benefit of the composite organization is the ability to scale the vector coprocessor
in a flexible manner by mixing the proper number and type of vector cores. If the typical workload for
a specific implementation includes a large number of integer operations, we can allocate more vector
cores for integer instruction execution. Similarly, if floating-point operations are not necessary, we
can remove all cores for floating-point instructions. In contrast, with VIRAM-1 we can only increase
performance by allocating extra lanes, which scales evenly integer and floating-point capabilities,
regardless of the specific needs of applications.

The composite organization requires a separate network for communication and data ex-
change between vector cores, as there is no centralized register file to provide the functionality of
an all-to-all crossbar for vector operands. If a full crossbar switch is necessary to accommodate the
data transfers between cores, the area and energy benefits from eliminating the centralized register
file will vanish. However, the inter-core communication requirements are far smaller so that a sim-
pler network structure is sufficient. Certain types of cores rarely need to communicate, such as the
cores for integer and the cores for floating-point instructions. When communication is necessary it
is usually for a single operand, hence the network need not provide bandwidth for all instruction
operands, as it is the case with the centralized register file. Finally, if multiple cores can execute
an instruction, we can take locality of operands into account before assigning an instruction to a
specific core, in order to minimize the need for inter-core communication.

6.1.2 Decoupled Execution

Decoupled execution [Smi84] plays a dual role in the CODE microarchitecture. First, it
replaces the delayed pipeline as a more flexible technique for tolerating long memory latencies for
vector accesses [EV96]. Second, it provides a mechanism for utilizing multiple vector cores with a
single instruction stream.

The basic idea in decoupling is to separate an instruction sequence into multiple streams,
one for each vector core. For example, memory instructions are placed in one stream to be issued
to a load-store core, while integer instructions create a separate stream for an integer execution
core. By providing an instruction queue in each core, the streams can slip with respect to each
other. A load-store core may run further ahead and initiate memory transfers before other cores
complete older instructions and long before following arithmetic operations need the fetched data.
This load-store core is practically prefetching data and helps tolerate long memory latencies. To
handle register dependencies between streams, decoupling requires a pair of queues for data transfers
for every two cores [SWP86]. For example, to use the result of a load instruction with a vector add,
the integer core reads data from a queue where the load core has placed them. An empty or full
data queue causes the receiving or transmitting core respectively to stall. Similarly, a full instruction
queue causes the issue logic to stall.

Decoupled execution allows the composite microarchitecture to execute multiple instruc-
tions in parallel on the vector cores. Long latency operations, such as memory accesses or divides,

62

Vector Issue
Logic (VIL)

Execution
Core 1

Execution
Core N

Load−Store
Core 1Core

Memory

Core M
Load−Store

State

System

Communication Network

CODE

Core
Scalar D Cache

I Cache

Instruction Bus (IBUS)

Instruction
Queue

Figure 6.1: The block diagram of the CODE microarchitecture. The vector coprocessor consists
of one state core, N execution cores, and M load-store cores, interconnected by a communication
network. The vector issue logic (VIL) block issues instructions to the cores and communicates with
the scalar core when necessary.

do not have to stall the whole system. Other cores can proceed with independent instructions from
different streams. In addition, a core that runs ahead may be able to initiate any long latency
operations early enough so that dependent instructions do not experience any stalls due to register
hazards.

The disadvantage of decoupling is the area and power overhead introduced by data queues.
A data queue in a decoupled vector processor must provide space for several vector registers, each
with tens of elements [Esp97]. In addition, a system with multiple cores requires a large number of
data queues. To avoid the overhead and the complexity of implementing two queues per couple of
cores, the CODE microarchitecture uses the local vector registers in each core as a unified storage
space for data communication. Each core writes the data it receives from any other core directly
in a local vector register from where it can access them later. Local vector registers are already
necessary for instruction operands and provide a large amount of storage capacity. Using them for
the data queues as well leads to a more efficient use of storage space. We cannot have the situation
where one data queue is empty while another one in the same core is full and causes stalls.

6.2 Microarchitecture Description

Figure 6.1 presents the block diagram for the CODE microarchitecture. The vector copro-
cessor consists of a collection of interconnected cores and a central issue logic block that dispatches
vector instructions to them. The following subsections provide a detailed description of the structure
and operation of each design component. An instruction queue decouples the scalar core and the
vector coprocessor. The queue allows the scalar core to determine most control dependencies (condi-
tional branches) ahead of time, without interrupting instruction execution in the vector coprocessor.

63

6.2.1 Vector Core Organization

Figure 6.2 presents the three classes of cores in the CODE microarchitecture and their inter-
nal structure. Execution cores (Figure 6.2.a) implement non-memory vector instructions. Memory
operations execute in load-store cores (Figure 6.2.b). A processor may include multiple execution
and load-store cores, some of which may be identical. A state core (Figure 6.2.c) provides additional
storage for vector registers. There can be only one state core in the system.

Each execution core includes an instruction queue (IQ) for decoupling purposes, a local
vector register file (LVRF), and one functional unit (FU). One input (INIF) and one output interface
(OUTIF) connect to the communication network and allow data exchange with other cores. The
LVRF must have sufficient read and write ports to support the functional unit(s), plus one read and
one write port for the communication interfaces. Depending on the type of instructions supported
by the functional unit, the number access ports for the LVRF may range from 3 read and 2 write
ports to 4 read and 2 write ports. The number of LVRF ports is independent of the total number
of cores in the system.

The capabilities of the functional unit, in other words the instructions they can execute,
define the type of the execution core. We can simply implement one type per vector instruction
group listed in Table 4.2 (page 28), with one core type for all floating-point instructions, one for
vector processing operations, and so on. A single type can support both integer and fixed-point
operations because they execute on similar datapaths. For integer and floating-point instructions,
we can implement separate functional units for simple (add, subtract) and complex (multiply, divide)
operations. Table 6.1 presents the common types of execution cores used in this thesis.

A load-store core is similar to an execution one, but, instead of a functional unit, it includes
a load-store unit. Depending on the capabilities of the unit, the core may be able to execute all
memory instructions or just a subset (loads or stores, unit stride or indexed and strided accesses).
A load-store unit includes address generation hardware (AG) and an output address queue (LSAQ)
for pending memory accesses.

The state core includes no functional units. Its only purpose is to introduce additional
vector registers. There must be storage space for at least 32 vector registers in the whole processor,
which is the number of registers defined in the VIRAM instruction set. Furthermore, an execution
or load-store core may run out of local vector registers if it executes a large number of instructions
that use disjoint sets of architectural registers. In this case, we must transfer a few vector registers
to other cores in order to make space for the operands of new instructions. Extra registers in the
state core can be particularly useful for this purpose.

6.2.2 Communication Network

The communication network provides the necessary interconnect for exchanging vector
registers between cores. It handles transmit and receive requests from the input and output interfaces
of the cores. Each matched pair of requests initiates a vector register transfer, assuming that
sufficient network bandwidth is available at the time. In most practical implementations, the network
will be able to transmit only a few vector elements in parallel and a register transfer will last several
clock cycles. However, the transfer can take place ahead of time from the instruction that requires
the vector register. In addition, the instruction execution and the register transfer can overlap in a
chained fashion.

The communication network is free of deadlocks, regardless of the number of vector cores
it connects, if all cores process the instructions and register transfers assigned to them in strict issue
order. We can prove this network property by noticing that the two cores involved in the oldest
pending transfer cannot make transmit or receive requests for any other transfers without violating
issue order. Therefore, we can establish a transmit-receive request match for the oldest transfer,
which allows the network to complete it. By induction, all following transfers will also complete and

64

to/fromto/from
network

Local Vector

LSAQ

INIF

Register File (LVRF)

IQ

OUTIF

from IBUS

memory

AG

from IBUS

to/from network

Local Vector

INIF

Register File (LVRF)

IQ

OUTIF

(c)

(b)

from IBUS

to/from network

Local Vector

INIFFU

IQ

OUTIF

Register File (LVRF)

(a)

Figure 6.2: The internal organization of the three classes of vector cores: execution (a), load-store
(b), and state core (c). All classes include an instruction queue (IQ), a local vector register file
(LVRF), one input interface(INIF) and one output interface (OUTIF). An execution core contains
one functional unit (FU). A load-store core includes address generation hardware (AG) and an
address queue for pending memory accesses (LSAQ). The input and output interfaces in each core
connect to the communication network. They include no data storage other than a single cycle
buffer for retiming.

65

Core Core Functional Unit VLRF Ports
Type Class Capabilities (read/write)

IntSimple Execution Simple integer operations 3/2
IntComplex Execution Complex integer operations 3/2
IntFull Execution All integer operations 4/2
ArithRest Execution Vector processing operations 3/2

Permutations operations
Flag processing operations

LDLoad Load-Store All load operations 2/2
LDStore Load-Store All store operations 3/1
LDFull Load-Store All load and store operations 3/2

Table 6.1: The common types of execution and load-store cores. The last column lists the number
of LVRF access ports (read/write) required for each core configuration. It includes the access ports
for the input and output interfaces. The IntFull type is the only one that can execute fixed-point
multiply-add instructions. No floating-point cores are listed here because the EEMBC benchmarks
include no floating-point operations. In practice, cores for floating-point execution are organized
similar to integer cores.

deadlock can never occur.

On the other hand, livelocks are theoretically possible. If the number of matched accesses
exceeds the available bandwidth, the network may indefinitely delay a transfer for an older instruction
in favor of transfers for younger instructions. However, long livelocks cannot happen in practice.
Data dependencies to the operands of the delayed instruction and structural hazards to the hardware
resources it uses will eventually block the issuing of any new instructions and allow the delayed
transfer to complete. We can even eliminate livelocks by using a narrow tag with every instruction
that identifies issue order and allows the network to give priority to the oldest transfer with matched
requests.

For a specific vector processor, we can choose from a wide variety of alternatives for the
network implementation: bus, ring, crossbar, ad-hoc interconnect, and so on. Each alternative leads
to different bandwidth, latency, power and energy consumption, and connectivity characteristics.
The basic trade-off in selecting a network implementation is between performance, cost of hardware
resources, and power consumption. A high bandwidth structure, such as a crossbar, can support
multiple concurrent transfers and can minimize the number of stalls due to register dependencies
across cores. However, higher bandwidth comes at the cost of increased power consumption for faster
transfers and larger area penalty for wiring and switching resources. We will analyze the impact of
the network characteristics on the performance of CODE in Chapter 9.

6.2.3 Vector Issue Logic

The vector issue logic (VIL) block issues vector instructions and register transfers to the
cores that coordinate the program execution on the composite organization. It does not control
the actual instruction execution within the cores or the steps for register transfers. Each core
contains decoding and sequencing logic that executes the element operations and cooperates with
the communication network for data exchanges.

66

...
...

..

Renaming Table Per Core State
Valid (1) Dirty (1) Core (5) Register (4)

0

0

1
1 1

0
0

4
1

2
7

−− −−

−− −−0

0

1

2

31

Architectural
Register

0
1
0

0

0

1

2

15

Local
Register

Free(1) IQ Counter (4)

Max. Local Register (4)

Capability Mask (8)

Figure 6.3: The control data structures in VIL. The valid and dirty bits in the renaming table entries
specify if the corresponding architectural register is allocated and if it has been recently updated.
A large system with up to 32 cores and up to 16 registers per core requires 11 bits per entry. The
state for each core includes a free list with one bit per local vector register, a counter for tracking
the instruction queue size, and two read-only registers. The read-only registers identify the number
of local vector registers and the execution capabilities of the core.

Basic Operation

The VIL block performs two basic tasks. First, it selects the core that will execute each
vector instruction. Second, it determines if any of the instruction operands are stored in cores
other than the one selected for its execution, and identifies the proper inter-core transfers. To
perform the latter task, the VIL needs to maintain the correspondence between each architectural
vector register in the VIRAM instruction set and the local vector register in one of the cores that
stores its data. The renaming hardware used for this purpose is similar to that in superscalar
processors [AST67, Tom67, Gro90, Yea96], but considerably simpler because it processes a single
vector instruction per cycle

The instruction bus (IBUS) broadcasts instructions from the VIL to the vector cores.
The instruction format on the IBUS identifies the core selected for its execution. It also includes
an annotated description of the physical location of all operands. For example, if architectural
vector register $vr12 is a source operand for an instruction to execute in core 2, a tuple of the
form <c1:r7,c2:r3> will describe it in the annotated format. The first entry of the tuple (c1:r7)
specifies that the content of architectural register $vr12 is currently stored in the local vector register
7 of core 1. The second entry (c2:r3) notes that core 2 expects to read the content of $vr12 from
its local vector register 3 when it executes the instruction. Since the two entries are different, the
tuple specifies a vector register transfer from core 1 to core 2. If the content of $vr12 was already
available in core 2, the two entries would be identical and the tuple would not trigger a transfer.
The core to execute the instruction, as well as all the cores involved in the register transfers the
instruction defines, read the instruction from the IBUS and write it in their instruction queue (IQ).
The control logic in each core dispatches instructions from the IQ to a functional unit for execution
and the proper input or output interface if any data exchanges are necessary.

Control Data Structures

Figure 6.3 describes the two data structures in the VIL, a renaming table and the per core
control state. The renaming table maintains the current mapping between the vector registers in
the instruction set and the actual registers available in the cores. Each entry corresponds to an
architectural register. The core and local register fields specify the exact location of the current
content of the architectural register. To process an instruction, the VIL must read the entries for
all its operands. Once it makes the proper issue decisions, it must update the entries for any of the
operands allocated for the first time or moved across cores.

67

For correct register allocation, the VIL must also maintain certain state for each core.
A free list uses one bit per local vector register to identify those that do not store the data for
some architectural register. An up/down counter tracks the size of the instruction queue (IQ). It
increments when a new instruction is assigned to the core. It decrements when the core completes
an instruction. The VIL also maintains in read-only registers the number of local vector registers
and a bit mask that identifies the capabilities of the functional unit in each core. These registers are
set at design time and allow the use of the same VIL logic with a variety of CODE configurations
in terms of number and mix of vector cores.

The renaming table and free lists are similar to the data structures maintained in super-
scalar, out-of-order processors for architectural (virtual) to physical register mapping. The distinc-
tive difference is that in CODE, the VIL processes just one instruction per cycle. A single vector
instruction specifies a large number of element operations and can keep a core busy for several cycles.
Hence, the complexity of VIL is independent of the number of cores in the system. On the other
hand, a superscalar processor must issue multiple scalar instructions on every cycle to utilize a large
number of functional units. Hence, it needs to perform multiple lookups and updates per cycle to
the corresponding data structures [Soh90, SS95]. The complexity arises not only from the multiple
access ports per data structure but also from the fact that the concurrent updates are dependent
and the issue logic must maintain sequential semantics at all times. Consequently, the complexity
of issue logic in a superscalar processor is an exponential function of the number of functional units
it supports.

6.3 Issue Policies and Execution Control

This section discusses the options for issue policies and the implementation of chaining in
CODE. It also provides an execution example that illustrates the function of the issue logic.

6.3.1 Issue Policies

The VIL block can use a number of alternative policies to select the core or allocate local
registers for a vector instruction. We measure the effectiveness of each policy using two metrics: the
number of register transfers between cores and, of course, performance. A large number of register
transfers is undesirable since either they require an expensive communication network or lead to
long stalls if sufficient network bandwidth is not available. However, transfers may be necessary in
order to enable concurrent instruction execution in the vector cores. Ideally, we want to maximize
performance while minimizing the number of transfers, but the two goals can often be incompatible.

The selection of a core to execute an instruction is trivial if a single core supports the
necessary operation. If multiple candidates exist, we can use one of the following selection policies:
random, load balancing, and minimum communication. To balance the load between cores with
identical functionality, the VIL can use the size of their instruction queues as an indication of load.
To minimize inter-core communication, the VIL must calculate the number of transfers necessary
for each candidate assignment given the current location of vector operands.

After selecting the core for execution, the VIL must determine the local vector registers
it will use for its sources and destination. For operands that are already available in the selected
core, no decision is necessary. However, for input operands moved from another core, the VIL must
allocate local vector registers to hold their values. The same holds for the destination register if
its content is not stored in the selected core, even though no inter-core transfer is required. If the
core has enough local registers free that do not store the value of any architectural register, the VIL
simply selects one of them. Otherwise, it needs to make space by moving the contents of some local
vector register(s) to another core. The potential policies for selecting local registers to replace are:
random, least-recently-used (LRU), and most-recently-used (MRU). LRU assumes that applications

68

exhibit temporal locality and following instructions to execute in this core will likely access the
same registers with previous instructions. In contrast, MRU assumes streaming applications, in
which register values are often discarded after a single use. The choice between LRU and MRU is
similar to that of choosing between caching [Smi82, Sez93] and streaming buffers [PK94, CB94] for
applications running on cache-based microprocessors.

We analyze the impact of the different core selection and register replacement policies in
Section 6.7.

6.3.2 Vector Chaining

The ability to chain the execution of vector instructions with the register transfers required
for their operands is crucial for achieving high performance with CODE. Since each vector register
contains a large number of elements, waiting for the whole register transfer to complete before any
element operations can start would lead to frequent multi-cycle stalls. Chaining an instruction to
a register transfer requires no additional inter-core signaling in CODE. The functional unit that
executes the instruction must only check with the input interface in the same core. Every time a
new set of elements for the input operand arrives, the input interface writes them to the LVRF.
The functional unit can immediately read them and initiate the corresponding element operations.
We support chaining between instruction execution and register transfers for all types of register
dependencies: RAW, WAR, and WAW. WAW and WAR chaining allows a core to quickly reuse
the storage of a local vector register as soon as its content starts being transferred elsewhere in the
system, reducing the need for more local registers.

The chaining logic within each core needs to monitor the functional unit and the two
interfaces for register dependencies. Since the core resources are constant regardless of the size of
the overall processor, there are no scaling concerns for chaining logic. Chaining decisions on register
dependencies are simple to make: the completion of an element operation in the functional unit
or a transfer in the interfaces allows the dependent unit or interface to initiate the corresponding
element action. Chaining control at a per element basis is the most flexible implementation possible,
because it allows each element operation to start as soon as its data are available, regardless to stalls
experienced by other element operations for the same instruction.

6.3.3 Execution Example

Figure 6.4 presents two execution cases for a vector add instruction assigned to core 1. In
the first case (Figure 6.4.a), the renaming table indicates that both source operands, registers $vr1
and $vr2, are already available in core 1. Therefore, the annotated instruction format indicates
no inter-core register transfer for them. No transfer is necessary for the destination register $vr0,
even though its content is initially available in core 2, because the add instruction will overwrite it.
After the instruction issues, the renaming table indicates that local register 2 in core 1 is the new
location for $vr0. The execution of the instruction involves only core 1, which performs its element
operations within a certain number of cycles.

In the second execution case (Figure 6.4.b), the initial location of architectural register
$vr2 is core 2. Therefore, the annotated instruction format indicates a register transfer from core
2 to core 1 using the tuple <c2:r0,c1:r3>. Once the instruction issues, the renaming table holds
the new mapping for $vr0 and $vr2, local registers 2 and 3 in core 1 respectively. The actual
execution involves both cores. Core 1 dispatches the instruction to both its functional unit and the
input interface that generates an input transfer request. Core 2 generates the corresponding output
transfer request by dispatching the instruction to its output interface. The communication network
can start the transfer after matching the two requests. The arrival of $vr2 elements in core 1 allows
the execution of the corresponding element operations in a chained fashion. When the execution
completes, the contents of all three operands are located in core 1.

69

time

starts
execution
instruction

completes

instruction
execution

Core 2

VIL

Core 1
issued

instruction

time

issued
instruction

Core 2

VIL

Core 1
request
transfer
input

register
transfer
starts

transfer
output

request
transfer
register

completes

starts
execution

instruction

completes
execution
instruction

1

0

2...

Valid Dirty Core Reg.

1
1

1 0
0
0

2
1
1

5
4
7

1

0

2...

Valid Dirty Core Reg.

1
1
1

1
1

0
0

21 1
4
7

1

0

2...
Valid Dirty Core Reg.

1
1

0
0
0

2
1

5
4

1

2 0
1

0

2...

Valid Dirty Core Reg.

1
1

1
0
0

1
2
4

1

3

1

1(b)
One Register

Transfer

(a)
No Register

Transfer

vadd.vv $vr0,$vr1,$vr2

c1:vadd.vv <c2:r5,c1:r2>,<c1:r4,c1:r4>,<c1:r7,c1:r7>

c1:vadd.vv <c2:r5,c1:r2>,<c1:r4,c1:r4>,<c2:r0:c1:r3>

Before Issue After Issue

Before Issue After Issue

Figure 6.4: Two execution cases for a vector add instruction assigned to core 1. For each case, we
present the annotated instruction format, the renaming table before and after the instruction issues,
and a time-line of the actions required to execute the instruction. In case (a), we assume that the
architectural registers $vr1 and $vr2 correspond initially to local registers 4 and 7 in core 1. In
case (b), the contents of register $vr2 are initially in local register 0 in core 2. The destination
register $vr0 is initially available in core 2, local register 5 in both cases. Case (a) requires no
inter-core communication. Case (b) requires a register transfer from core 2 to core 1 for the contents
of architectural register $vr2.

70

Memory
System

Core
Scalar

CODE

LANE 2 LANE 3

LANE 1LANE 0

Vector Issue
Logic (VIL)

Instruction Bus

D Cache

I Cache

Core
State

Core 1
Exec. Ld/St

Ld/StExec.

Core 1 Core
State

Core 1
Exec. Ld/St

Ld/StExec.

Core 1

Core
State

Core 1
Exec. Ld/St

Ld/StExec.

Core
State

Core 1
Exec. Ld/St

Ld/StExec.

Core 2 Core 2

Core 2

Core 1

Core 2

Core 2 Core 2

Core 1

Core 2 Core 2

Figure 6.5: An implementation of the CODE microarchitecture with four vector lanes. The processor
includes two execution and two load-store cores. The hardware resources of each core are distributed
across the four lanes.

6.4 Multi-lane Implementation of Composite Organizations

Incidentally, the composite nature of CODE does not prohibit the use of vector lanes.
Figure 6.5 presents an implementation of the microarchitecture with four vector lanes. Each lane
contains part of each core, including a vertical partition of the LVRF, a 64-bit datapath from the
functional unit, and a 64-bit slice of the interfaces to the communication network. We can replicate
the core instruction queues in every lane or place them in a centralized location that connects to all
lanes. The latter approach is preferable only for designs with few lanes or few cores per lane due to
the wiring resources it requires.

Figure 6.5 shows the load-store core distributed across the four lanes. This approach
simplifies the structure of the communication network. However, it may require the replication of
resources such as the TLB or the output address queue. If the area overhead is significant, we can
place these resources in a centralized location and allow all lanes to share them. A micro-TLB per
load-store core can reduce the frequency of accesses to the main TLB and allow resource sharing
without noticeable performance penalty.

Figure 6.6 shows how lanes and cores provide two orthogonal methods for scaling imple-
mentations of the CODE microarchitecture. Multiple lanes execute in parallel a large number of
element operations for each instruction in progress. Multiple cores overlap the execution of multiple

71

design−space
CODE

cores

design−line
VIRAM−1

data parallelism
long vector

data parallelism
short vector

lanes

Figure 6.6: The two scaling dimensions of the CODE microarchitecture. Multiple lanes exploit
parallelism in the form of long vectors, while multiple cores help with parallelism in the form of in-
dependent vector instructions. For each implementation, we can choose the point in the design space
that best matches the characteristics of its applications. In contrast, the VIRAM-1 microarchitecture
has a single scaling dimension, since we can only vary the number of lanes in the processor.

vector instructions. For applications with long vectors, we can organize hardware resources in many
lanes and few cores. If long vectors are not available, we can exploit independent vector instructions
by implementing many cores with only a few lanes. In other words, we can select the number of
cores and lanes that matches the requirements of applications in the most efficient way given the
available hardware resources. Chapter 9 explores the optimal balance between cores, lanes, and
communication network bandwidth for the EEMBC benchmarks.

All processors based on CODE are binary compatible. A single design database can create
multiple implementations in a two-step process. First, we assemble a lane using a set of narrow
core designs from the database. Next, we construct the heart of the vector processor by allocating
the proper number of lanes. In other words, we can amortize the development cost of circuits for
the cores, the VIL, and the communication network over a large number of implementations with
diverge characteristics. This is a major advantage for CODE in terms of design complexity, along
with the fact that the circuits for its basic components are straight-forward to develop due to their
relatively simple structure.

6.5 CODE vs. VIRAM-1

CODE differs from the VIRAM-1 microarchitecture in two ways. First, it breaks up the
centralized register file and distributes the vector registers across all cores. Second, it uses decoupling,
instead of the delayed pipeline, to tolerate long memory latencies. The following subsections discuss
in details the implications of the two differences.

6.5.1 Centralized vs. Distributed Vector Register File

The distributed register file in CODE associates a small number of vector registers with the
functional unit in each core. In Section 6.1, we discussed two obvious advantages of this approach
over the centralized vector register file in VIRAM-1. The local register file in each core has a small
number of access ports that is independent of the number of cores in the system. Therefore, we
can implement it from compiled SRAMs available in design libraries for semiconductor processes,

72

without resorting to the tedious full-custom techniques. In addition, the total number of vector
registers becomes proportional to the number of functional units in the system. Therefore, there are
always sufficient registers to stage the operands for executing one instruction in each core, regardless
of the total number of cores in the system.

Furthermore, the distributed register file introduces significant area, energy, and latency
advantages as we increase the number of functional units in the processor. By properly adapting
the analysis by Rixner in [RDKM00], we can derive the following equations for the total area for
vector registers, the register file access latency, and the energy consumed for an element access:

Area = c · r · e · d · (w + p) · (h + p)

Latency =
w + p

ν0

·

√

r · e · d

L
+ log4[(Cword + Cw · (w + p)) ·

√

r · e · d

L
]

+
h + p

ν0

·

√

r · e · d

L
+ log4[(Cbit + Cw · (h + p)) ·

√

r · e · d

L
]

Energy = (Cword + Cw · (w + p)) · E0 ·

√

r · e · d

L

+a · (Cbit + Cw · (h + p)) · E0 ·

√

r · e · d

L

Parameters c, r, and p represent the number of cores in the system, the number of registers
per core, and the number of access ports per register respectively1. For the centralized vector register
file in VIRAM-1, there are 32 vector registers (r = 32) in one core (c = 1), and the number of access
ports per register is typically p = 3 · FU , where FU is the number of functional units. In CODE,
each functional unit is in a separate core with a local vector register file, hence c = FU . The number
of access ports per local register is typically p = 5. The number of registers per core (r) is a design
parameter of the core.

Figure 6.7 provides a graphical representation of the three equations for VIRAM-1 and
CODE. For the centralized register file of VIRAM-1, the total area for vector registers is a square
function of the number of functional units (FU), even though the register file capacity is constant
(vector 32 registers). The register access latency grows with the logarithm of FU because the
lumped capacitance of the pass transistors for the access ports typically dominates the capacitance
of the word-line and bit-line wire. The increased latency creates a serious limitation for the clock
frequency of the whole processor. The energy for an element access is a linear function of FU , due
to the capacitance introduced by the additional access ports for each functional unit. Consequently,
implementing the VIRAM-1 microarchitecture with a large number of functional units becomes
prohibitively expensive with all three metrics.

On the other hand, both the area and the capacity (number of registers) of the distributed
register file in CODE are proportional to the number of functional units. The latency and the energy
for an element access are independent from FU , since the local register file in each core has fixed
size and a constant number of access ports. Therefore, the distributed organization for the vector
register file is appropriate for implementations with a large number of functional units.

1The remaining design and technology parameters in the three equations are: e is the number of elements per

vector register; d is the element width in bits; L is the number of lanes; w and h are the width and height of single-bit

storage cell; Cword is the input capacitance of the word select transistor in a register cell; Cbit is the capacitance

introduced by the storage cell to each bit-line; Cw is the wire capacitance per unit length; ν0 is wire propagation

velocity; E0 is the energy required to charge a unit of capacitance.

73

0

40

80

120

160

1 4 7 10 13 16

Number of Functional Units

A
re

a
(m

m
^2

)
VIRAM-1

CODE (r=12)

CODE (r=8)

CODE (r=4)

1

1.6

2.2

2.8

3.4

1 4 7 10 13 16

Number of Functional Units

A
cc

es
s

L
at

en
cy

 (
n

se
c)

VIRAM-1

CODE (r=12)

CODE (r=8)

CODE (r=4)

0

1.5

3

4.5

6

1 4 7 10 13 16

Number of Functional Units

A
cc

es
s

E
n

er
g

y
(p

J)

VIRAM-1

CODE (r=4)

CODE (r=8)

CODE (r=12)

Figure 6.7: The register file area, register access latency, and energy for an element access as a
function of the number of functional units (FU) in VIRAM-1 and CODE. For CODE, we present
separate curves for the cases of r =4, 8, and 12 local vector registers per core. The values used
for the technology parameters are derived from the IBM SA27E process and are representative of
0.18µm CMOS technology.

However, the distributed vector register file incurs an additional energy overhead for inter-
core register transfers. Such transfers dissipate energy on the wires of the communication network.
For any efficient network design, the length of wires is proportional to the square root of total
area occupied by the cores. Similarly, the length of the wires that connect the boundary of the
centralized vector register file in VIRAM-1 to the inputs of the functional units is proportional to
the square root of the total area occupied by the functional units. In VIRAM-1, energy is consumed
on the long wires for every register access, while in CODE energy is consumed on long wires only for
register accesses that trigger inter-core transfers. Figure 6.8 presents the total energy consumed by a
vector instruction for reading, writing, and transferring elements between the register file(s) and the
functional unit for VIRAM-1 and CODE. The distributed register file leads to higher energy efficiency
when the average number of inter-core register transfers per vector instruction (t) in CODE is low, or
when the total number of functional units is large. Figure 6.9 presents the cross-over point in terms
of number of functional units at which CODE exceeds VIRAM-1 in register file energy efficiency as
a function of t. For t ≤ 1.2, CODE leads to better energy efficiency for all implementations with
three functional units or more. Note that the maximum value for t is 2.

6.5.2 Decoupling vs. Delayed Pipeline

Figure 6.10 presents the execution of a five-instruction segment on the VIRAM-1 delayed
pipeline and the CODE decoupled organization. The segment includes two long latency instructions:
an unpipelined vector divide (vdiv) and an indexed load (vldx) that causes multi-cycle stalls due
to memory conflicts. No data dependencies exist between the five instructions. In the delayed

74

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Number�of�Functional�Units

In
st

ru
ct

io
n

�E
n

er
g

y�
(n

J)
VIRAM-1 CODE�(t=0.0)

CODE�(t=0.5) CODE�(t=1.0)

CODE�(t=1.5) CODE�(t=2.0)

Figure 6.8: The total energy consumed by a vector instruction for reading, writing, and transferring
elements between the register file(s) and a functional unit as a function of the number of functional
units (FU). The instruction reads two vector registers as sources and writes one as the destination.
Each vector register has 32 64-bit elements. For CODE, we present curves for five different values
of the average number of inter-core register transfers per instruction (t). The curve for t = 2.0
represents the worst case in which all instruction operands require an inter-core transfer. Each core
has r = 8 local vector registers. The estimates for the area of functional units and cores, as well as
for the wire capacitance were derived from the VIRAM-1 prototype chip.

structure of VIRAM-1 (Figure 6.10.a), the pipelines of the functional and load-store units work in
a lock-step in order to preserve dependencies. Thus, the stalls introduced by the two high latency
operations also delay the processing of any instructions executing in parallel, despite the lack of
register dependencies. Moreover, the vector multiplication (vmul) cannot issue until one of the two
previous instructions has completed its execution in one of the two arithmetic units of VIRAM-1.
Because of the in-order issue policy, the load instruction cannot issue earlier either, even though the
load-store unit is idle.

Decoupling (Figure 6.10.b) removes both limitations and allows the code segment to execute
faster. Unless there are register dependencies, the pipelines of different cores do not interact. Stalls
in long latency operations do not affect instructions executing in other cores. Hence, the vector
add instructions (vadd) can complete in the second execution core, despite the multi-cycle stalls
for the divide (vdiv) in the first one. Furthermore, the instruction queue in each core can receive
new instructions, while an older instruction occupies the functional unit. All instructions in the
segment issue to cores in-order in back to back cycles. The multiplication (vmul) and subtract
(vsub) instructions still have to wait for previous instructions to complete before their execution
starts. However, the indexed load can start fetching elements immediately after issue and the data
will become available faster for following instructions that use them for operands.

6.6 CODE vs. Out-of-Order Processors

At this point, it is also useful to emphasize the differences between the CODE microarchi-
tecture and processor organizations for out-of-order (OOO) execution. Both approaches include a

75

0

3

6

9

12

0 0.4 0.8 1.2 1.6 2

Intercore�Transfers�Per�Instruction

N
u

m
b

er
�o

f�
F

u
n

ct
io

n
al

�U
n

it
s

Figure 6.9: The minimum number of functional units (FU) for which the distributed register file of
CODE leads to lower energy consumption for accessing register operands per instruction than the
centralized register file organization in VIRAM-1. We calculate the number of functional units as a
function of the frequency of inter-core register transfers per instruction (t) in CODE. For t ≤ 0.9,
CODE is always more energy efficient that VIRAM-1. For a processor with three functional units
as in the case of the VIRAM-1 prototype chip, CODE dissipates less energy in the register file as
long as t ≤ 1.2,

large number of physical registers, which enable the elimination of name dependencies (WAW and
WAR register hazards) through register renaming. However, there are significant differences in the
control logic that orchestrates instruction scheduling and execution in each approach.

The CODE microarchitecture issues instructions to vector cores in strict program order.
In addition, each vector core maintains program order for the instructions assigned to it by always
executing them in the order they were received. However, instructions without data dependencies
assigned to different cores may execute and complete out of order. Hence, we can characterize
CODE as an architecture with in-order instruction issuing and scheduling, but potentially out-
of-order instruction execution and completion. On the other hand, OOO organizations are more
aggressive in terms of reordering. They issue instructions in order to reservation stations or an
instruction window (buffer), from where instructions may be scheduled and executed in any order
that does not violate data and control dependencies [Soh90].

In-order scheduling limits the ability of CODE to reorder instructions and eliminate all
unnecessary dependencies. Two arithmetic instructions issued to the same core will execute sequen-
tially, even if the operands of the second one become available earlier than the operands for the
first instruction. An OOO processor with an idling functional unit would try to reorder the two
instructions and execute the second one while the first one waits for its operands. However, we
don’t consider in-order scheduling a significant limitation for CODE. The most important benefit
from reordering is the ability to prefetch data by executing load operations as soon as the addresses
are available. By decoupling the load-store cores for those for arithmetic operations, CODE can
look ahead in the instruction stream and initiate data prefetching for load instructions before pre-
ceding arithmetic operations actually execute. Therefore, the reordering capabilities of CODE are
sufficient to tolerate long memory latencies. Reordering of arithmetic instructions with respect to
each other has a smaller impact on performance. A compiler can achieve most of its benefits with

76

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�������
�������
�������
�������

�������
�������
�������
�������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������

	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

����
����
����
����

���������
���������
���������
���������

�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
���������
���������
���������
���������

���������
���������
���������
��

���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������

time

(CODE)
EXECUTION
DECOUPLED

time

(VIRAM−1)

�������
�������
�����
�����

(b)

(a)

Instruction execution
Pipeline stall

or core (CODE)
Start of execution for
element operations

Instruction issued to

DELAYED
PIPELINE

functional unit (VIRAM−1)

vsub
vldx
vmul

vadd

Legend:

vdiv

vmul
vldx
vsub

vadd
vdiv

Figure 6.10: The execution of a five instructions on the (a) delayed and (b) decoupled pipelines.
The code segment includes no register dependencies. The delayed pipeline assumes the VIRAM-
1 configuration with two arithmetic and one load-store (memory) units. The decoupled pipeline
assumes two execution cores for arithmetic instructions and one load-store core. For simplicity, we
do not show the delay stages at the beginning of the execution of each instruction on the delayed
pipeline.

static scheduling, since the latency of arithmetic instructions is short and predictable, unlike the
latency of memory operations. In addition, OOO organizations use full reordering along with specu-
lative execution to alleviate the cost of conditional branches [YP92]. In contrast, CODE uses vector
instructions, which eliminate a large percentage of the predictable branches and the performance
overhead associated with them.

The advantage of in-order scheduling in CODE is reduced design complexity. With rela-
tively simple data structures, the VIL block can implement renaming and coordinate register trans-
fers among cores at issue time, long before the instruction has its operands available and can execute.
CODE does not require the instruction window of OOO organizations or the complicated, associative
logic for dynamically scheduling instructions based on the availability of their operands. In addition,
the in-order execution of instructions within each core guarantees that the communication network
in CODE is free of deadlocks (see Section 6.2, page 62). If the cores could reorder the instructions
assigned to them, just as the functional units in OOO processors using the Tomasulu algorithm
[Tom67] can reorder the instructions assigned to their reservation stations, deadlocks would be pos-
sible in the communication network. The logic for detecting or preventing deadlocks can be quite
complex, as it needs to monitor the progress of instruction execution across all cores.

6.7 Microarchitecture Tuning

In this section, we use the EEMBC benchmarks to tune some of the basic microarchitecture
parameters for CODE, such as the issue policies and the number of local vector registers per core.
We present a complete performance evaluation for CODE in Chapter 9, which also explores the
trade-off between the number of cores and the number of lanes in the system.

The main figure of merit for this study is the average number of inter-core register transfers
per vector instruction (t). Fewer transfers means less energy consumed on the wires of the com-
munication network. A policy that results in a small average has the potential of high performance
even with CODE configurations that have limited network bandwidth. However, the average num-
ber of transfers can also be low due to decreased concurrency of execution across the vector cores.

77

0.0

0.5

1.0

1.5

2.0

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg

T
ra

n
sf

er
s�

p
er

�In
st

ru
ct

io
n

�(
t)

Reference Random Load�Balancing Minimum�Communication

0.0

0.5

1.0

1.5

2.0

Autocor Convenc Bital Fft Viterbi

T
ra

n
sf

er
s�

p
er

�In
st

ru
ct

io
n

�(
t)

Reference Random Load�Balancing Minimum�Communication

Figure 6.11: The average number of inter-core register transfers per vector instruction (t) for the
three core selection policies. The first bar for each benchmark refers to the reference configuration
with a single integer and load-store core. The other three bars represent a configuration with two
integer and two load-store cores using the corresponding selection policy. Each core includes r = 32
local vector registers in both configurations. The maximum possible value for t is 2.0. A lower
average is better.

Therefore, in certain cases we must also refer to raw performance in order to select the optimal value
for a parameter.

We analyze the behavior of CODE using a parameterized trace-driven performance model.
The model allows us to vary independently a large number of microarchitecture parameters including
the number of cores and lanes, the latency of execution and communication events, the issue policies,
and the characteristics of the memory system. The flexibility of the performance model enables the
evaluation of a large number of realistic implementations of CODE. It also allows us to create
configurations that isolate and emphasize the effect of specific design parameters and indicate the
optimal values for them.

It is interesting to notice that the composite and decoupled nature of the CODE microar-
chitecture simplified significantly the development of the highly parameterized performance model.
Changes in the parameters for a system component, such as a core or the VIL, do not affect the
structure of the models for other components. They only affect the exact timing of input and out-
put events for other models. With the delayed pipeline of VIRAM-1, on the other hand, concurrent
execution occurs across functional units occurs in a tied lock-step. Almost any parameter variation
requires global modeling changes in order to adjust the overall pipeline length or the location of the
pipeline stage for a specific event.

6.7.1 Core Selection Policy

The core selection policy determines which core will execute a specific instruction in the
case that multiple cores include the proper datapaths. The alternative policies, discussed in Section
6.3 (page 67) are random, load balancing, and minimum communication. To evaluate their impact,
we set up a CODE configuration with two cores for integer arithmetic (IntFull) and two load-store
cores (LDFull). To eliminate any register transfers or stalls that are not related to the core selection
policy, we used r = 32 local vector registers per core and a constant latency memory system with
infinite bandwidth.

For comparison, we also set up a reference configuration with one integer and one load-store
core and r = 32 vector registers per core. This reference design exhibits the minimum number of
register transfers for each benchmark. A register is transferred across cores only if its value produced

78

0.0

0.5

1.0

1.5

2.0

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg

S
p

ee
d

u
p

Random Load�Balancing Minimum�Communication

0.0

0.5

1.0

1.5

2.0

Autocor Convenc Bital Fft Viterbi

S
p

ee
d

u
p

Random Load�Balancing Minimum�Communication

Figure 6.12: The speedup of the multi-core CODE configuration over the reference design for the
three core selection policies. Both configurations use the same memory system, have a single lane,
and have unlimited bandwidth available in the communication network. For Cjpeg and Djpeg, we
only measure the execution time of the vectorizable functions. With twice as many cores in the
multi-core system, the maximum possible speedup is 2. A higher speedup is better.

in an integer core is the operand of a load-store instruction and vice versa. There are no transfers
due to core selection or register replacements with the reference configuration.

Figure 6.11 presents the average number of register transfers (t) for the three core selection
policies. As expected, the minimum communication policy matches the number of transfers in the
reference system for all benchmarks excluding Filter. The random and load balancing schemes,
on the other hand, generate up to twice as many transfers, with the load balancing approach being
slightly better.

From Figure 6.11 alone one could conclude that the core selection policy of choice is mini-
mum communication. However, this policy has the tendency to execute most instructions in a single
core and limits the degree of concurrency in the system. Figure 6.12 compares the performance
potential of the three policies. It presents the speedup of the multi-core configuration over the refer-
ence design under the optimistic assumption of infinite bandwidth in the inter-core communication
network. The load balancing scheme spreads the workload evenly across all cores and can deliver
up to 40% higher performance than the minimum communication approach for applications like
Rgb2yiq, Djpeg, Convenc, and Fft.

The conclusion from Figures 6.11 and 6.12 is that the core selection policy based on load
balancing is most appropriate for CODE configurations for maximum performance. The minimum
communication policy is practical for designs that target minimum energy consumption or have
limited resources available in the communication network.

6.7.2 Register Replacement Policy

The register replacement policy (see Section 6.3, page 67) is important for CODE con-
figurations with a small number of local vector registers per core. To measure the impact of the
three candidate policies, random, LRU, and MRU, we simulated a CODE configuration with r = 4
registers per core. To mask out any register transfers due to core selection, we included a single
integer and a single load-store core in the system. The minimal number of cores places maximum
pressure on the local register file in each core and should reveal the full potential of each replacement
policy.

Figure 6.13 presents the average number of register transfers (t) with each replacement
policy for the EEMBC benchmarks. Autocor and Convenc are hardly affected by the choice of

79

0.0

0.5

1.0

1.5

2.0

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg

T
ra

n
sf

er
s�

p
er

�In
st

ru
ct

io
n

�(
t)

Random LRU MRU

0.0

0.5

1.0

1.5

2.0

Autocor Convenc Bital Fft Viterbi

T
ra

n
sf

er
s�

p
er

�In
st

ru
ct

io
n

�(
t)

Random LRU MRU

Figure 6.13: The average number of inter-core register transfers per vector instruction (t) for the
three register replacement policies. All numbers refer to a CODE configuration with one integer and
one load-store core. Each core includes only r = 4 local vector registers. The maximum possible
value for t is 2.0. A lower average is better.

policy because they use less then six architectural registers for instruction operands. LRU results
to slightly less transfers for Cjpeg , Djpeg, Bital, and Viterbi, where each vector value produced
by arithmetic instructions is used as an input operand in many of the following instructions. On
the other hand, MRU replacement is slightly better for Rgb2cmyk and Fft, where the result of each
vector instruction is typically used once or twice as an input operand. Random replacement is
usually in the middle, excluding Rgb2yiq for which it leads to the minimum number of transfers.

With just 4 register per core, the number of transfers for Filter is is above 1.7 regardless of
the allocation policy. Filter uses 15 architectural registers for instruction operands. In addition, its
main loop body is structured in way that both LRU and MRU result to frequent transfers. Random
replacement can sometimes reduce the number of register transfers, but typically performs similarly
to MRU, as reported in Figure 6.13. On the other hand, all other benchmarks require less than 1.0
transfer per instruction. This is true even for Cjpeg and Djpeg that use 25 vector registers in the
code for forward and inverse DCT transforms.

Overall, the measured differences between the three replacement policies are small. It is
unlikely that they can affect significantly the performance or energy consumption of a configuration,
regardless of the bandwidth available in communication network. Therefore, it is preferable to use
the random allocation policy for which we do not have to implement any hardware for approximating
LRU or MRU selection.

6.7.3 Number of Local Vector Registers

Having set the register replacement policy, we can explore the impact of the number of local
vector registers per core (r). Figure 6.14 presents the number of register transfers (t) as a function
of r. The simulated CODE configuration includes only one integer and one load-store functional
unit in order to put maximum pressure in the local register file in each core.

For most benchmarks, 6 to 8 local vector registers per core are sufficient to eliminate com-
pletely any inter-core transfers due to register replacement. In addition, all benchmarks excluding
Filter require less than 0.5 transfers per vector instruction for r = 8 registers. Filter requires
at least 12 registers in order to mask the ineffectiveness of the replacement policy with its register
access pattern.

The necessary number of local vector registers per core can be further reduced with help
from the compiler. The compiler can use the valid bits defined in the VIRAM instruction set for the

80

0.0

0.5

1.0

1.5

2.0

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg

T
ra

n
sf

er
s�

p
er

�In
st

ru
ct

io
n

r=4 r=6 r=8 r=12 r=16 r=32

0.0

0.5

1.0

1.5

2.0

Autocor Convenc Bital Fft Viterbi

T
ra

n
sf

er
s�

p
er

�In
st

ru
ct

io
n

�(
t)

r=4 r=6 r=8 r=12 r=16 r=32

Figure 6.14: The average number of inter-core register transfers per vector instruction (t) as a func-
tion of the number of local vector registers per core (r). All numbers refer to a CODE configuration
with one integer and one load-store core. The case of r = 32 local registers represents the best case
with no inter-core transfers due to replacements. The maximum possible value for t is 2.0. A lower
average is better.

32 architectural registers in order to notify the hardware when the contents of a register are no longer
necessary and the corresponding local register can be reused without any inter-core transfers. For
example, Filter would generate less than 1.0 transfers per vector instruction with just 8 registers if
the compiler would mark as invalid any registers that don’t carry useful data across loop iterations.

6.8 Related Work

Both composite organization and decoupled execution have been employed in various forms
in a number of commercial and research architectures.

6.8.1 Composite Processors

Composing powerful processors by interconnecting simpler elements is an idea as old as
the field of computer architecture. It is the basis of all parallel processors, regardless of the level
of integration (multiple boxes, multiple boards, multiple chips, or single die) or the communication
paradigm (shared memory or message passing) [CSG98]. Nevertheless, several recent uniprocessors
have employed similar approaches for organizing hardware resources. The simpler cores within such
designs are often described as “clusters,” “cells,” “slices,” or “array elements.”

The Alpha 21264 superscalar processor organizes integer resources in two clusters [Kes99].
Each cluster has a full copy of the architecture state. Clustering simplifies the register file design and
keeps the forwarding latency low for instructions executing within the same cluster. In [FCJV97,
Far97], Farkas proposes and analyzes a multi-cluster superscalar organization, where each cluster
stores a static subset of the architecture state. The hardware performs the assignment of instructions
to clusters based on the location of the registers it uses. Unlike with CODE, the multi-clustered
superscalar design must issue one instruction per cycle to each available cluster, because each scalar
instruction can keep a cluster busy for just one cycle. Consequently, the issue logic of the multi-
clustered superscalar processor is highly complicated.

Several VLIW processors have also relied on composite techniques. The MAJC processor
uses four slices, one for each operation in its 128-bit long instruction format [TCC+00]. A slice
includes a functional unit and a set of registers, a subset of which is visible to the other slices (global

81

registers). Software, i.e. the compiler, is fully responsible for assigning instructions to slices and for
scheduling inter-slice communication through global registers. In the Lx multi-cluster architecture,
each cluster is a full four-way VLIW processor [FBFD00]. The clusters share instruction and data
caches and communicate with explicit send-receive instructions inserted by software. The ManArray
DSP architecture [Lev01] is a similar organization with multiple VLIW array elements per processor.
Unlike these VLIW processors, CODE uses hardware to decompose the instruction sequence in
multiple streams.

Finally, the Imagine stream processor [RDK+98] is a collection of ALU clusters. Each
cluster has a local register file and executes VLIW instructions. Inter-cluster communication occurs
by streaming data between cores or by accessing a separate, global register file. Software controls
both instruction issue and communication in a micro-coded fashion.

6.8.2 Decoupled Processors

Despite its advantages with tolerating long memory and operation latencies, decoupled
execution has fallen out of favor with modern microprocessors. However, several research and com-
mercial architectures have used decoupling techniques in the past.

The IBM 360/91 [AST67] used two levels of queues to separate integer and floating-point
instructions for parallel execution. Smith proposed and analyzed decoupling for memory accesses in
[Smi84] and [SWP86]. This work lead to the Astronautics ZS-1 system [Smi89], which included one
access and one execute processor that communicated through data queues. CODE is more similar
to the PIPE [G+85] and MISC [TFP92] designs that used decoupling to run a single program on
four processing elements that communicate through dedicated queues for each pair of elements. The
WM architecture [Wul92] was a similar concept with the data queues visible to software through the
instruction set. The ACRI processor [TM95, TRMM95] attempted to decouple the control portion
of a program execution using a separate control processor in addition to the access and execution
elements. CODE resembles this organization because it decouples the scalar core from the execution
cores in the vector coprocessor. The scalar core resolves all branches and determines the control
flow as early as possible.

Espasa studied a vector organization with decoupled memory accesses [EV96, Esp97].
Apart from tolerating higher memory latencies, decoupling reduced the overhead associated with
register spilling due to the small vector register file. In [Asa98], Asanovic discussed several imple-
mentation issues for such a vector organization. CODE supports decoupling not only for memory
accesses, but also for any two operations that execute in separate cores.

6.9 Summary

In this chapter, we introduced CODE, a new vector microarchitecture for multimedia exe-
cution. CODE eliminates the centralized vector register file, the main bottleneck for the VIRAM-1
organization. It consists of multiple interconnected cores, each with a small local vector register file
and hardware resources for executing a subset of the vector instruction set. Decoupling techniques
provide each core with a separate instruction stream, eliminate unnecessary dependencies, and hide
long latencies. Along with a multi-lane implementation, CODE defines a microarchitecture with two
orthogonal scaling dimensions that can exploit both vectorized and non-vectorized parallelism.

The next three chapters provide further information and evaluation of CODE. Chapter
7 describes a set of architectural and microarchitectural techniques that implement precise virtual
memory exceptions for vector instructions. Chapter 8 discusses the memory system requirements
of CODE, focusing mostly on on-chip, embedded DRAM organizations. Chapter 9 evaluates the
performance potential of scale. It explores the tradeoff between cores and lanes and investigates the
impact on performance of the bandwidth available in the inter-core communication network.

82

Chapter 7

Precise Virtual Memory

Exceptions for a Vector

Architecture

“A pessimist sees the difficulty in every opportunity;

an optimist sees the opportunity in every difficulty.”

Winston Churchill

One of the biggest obstacles to the wide adoption of vector architectures in general-purpose
computing systems is the difficulty of supporting virtual memory in vector hardware. Support for
virtual memory is necessary for running a full-size operating system. The main challenge of virtual
memory is implementing precise exceptions for translation errors. Vector processors either implement
virtual memory with several restrictions that avoid exceptions or provide mechanisms for imprecise
exception handling. However, imprecise exceptions complicate the development of operating system
handlers and add to their execution overhead. This chapter explores a set of enhancements to the
VIRAM instruction set and the CODE microarchitecture that implement precise virtual memory
exceptions without introducing significant performance or area overhead.

Section 7.1 summarizes the general challenges in implementing precise exceptions and the
additional hurdles with vector processors. Section 7.2 revisits the semantics of precise exceptions
for virtual memory in the VIRAM architecture and provides an alternative definition with relaxed
requirements on implementations. Section 7.3 describes the changes necessary in the CODE mi-
croarchitecture to implement precise virtual memory exceptions. Section 7.4 evaluates the impact of
supporting precise exceptions on application performance and hardware resources. Finally, Section
7.5 reviews related work on precise exception support in general-purpose microprocessors.

The precise exceptions techniques presented in this chapter are general and can support
both memory and arithmetic exceptions in vector instructions. However, we will focus mostly on
the issue of precise exceptions for virtual memory violations such as TLB misses, refills, and write
protection errors. Virtual memory exceptions require the invocation of an operating system handler
before execution can be safely resumed. On the other hand, arithmetic exceptions in vector instruc-
tions do not always indicate significant execution errors and can be handled differently. Furthermore,
arithmetic exceptions, such as overflow and underflow, are a secondary issue for embedded multime-
dia systems, because the overhead of running operating system handlers to fix them is prohibitive
for real-time applications. Chapter 4 summarizes the support for arithmetic exceptions in the VI-
RAM instruction set that uses the flag registers and meets the requirements of software without
the need for precise exceptions. In addition, we do not discuss exceptions due to sources other than

83

vector instructions. The scalar core can handle IO interrupts, scalar exceptions, and unknown or
unimplemented instructions without significant impact on the vector coprocessor organization.

7.1 The Challenges of Precise Exceptions

When an instruction generates an exception, the processor must stop the execution of
the current process and transfer control to an operating system handler. The handler uses the
information provided by the hardware to identify the exception, fix it, and, if possible, resume the
interrupted process. The status of the architecture state, in registers or main memory, at the time
the handler starts is the characteristic that differentiates between precise and imprecise exceptions.
An exception is precise if the architecture state corresponds with the sequential model of program
execution, where one instruction completes before the next one begins [SP88]. All instructions
preceding the one that causes the exception have completed their execution and written their results
in the architecture state. The faulting instruction and any other that follow it have made no changes
to the architecture state. If any of the above statements is not true, the exception is imprecise.

Precise exceptions are desirable because they simplify exception processing. The handler
has easy access to the values of source operands for the faulting instruction. After handling the
exception, the operating system can restart the interrupted process by resuming execution from
the faulting instruction. With imprecise exceptions, on the other hand, the operating system must
somehow compensate for the partial results of both preceding and following instructions during
exception handling and process restart. In most cases, imprecise exceptions require saving and
restoring intermediate results stored in hardware state not visible through the instruction set using
operating system code that is specific to each processor implementation [MV96]. The high complexity
of handlers for processors with imprecise exceptions usually discourages software and operating
system development for such designs.

The difficulty of implementing precise exceptions rises from the departure of modern mi-
croprocessors from the sequential execution model. Pipelined implementations allow instructions
to overlap their execution with a different instruction active in each pipeline stage. At the time a
load instruction generates an address translation error, several instructions, both older and younger
in program order, may be in progress. If the various functional units have a different number of
pipeline stages, instructions may also complete out of order. The number of instructions executing
concurrently is even larger with superscalar designs, where multiple instructions enter the pipeline
in each cycle. Out-of-order issue and speculation techniques create further complications since they
allow instructions to enter the pipeline out of program order and they often initiate instructions that
should not execute at all.

In all cases, the processor must report exceptions in strict sequential order and, when an
exception occurs, the processor must appear to commit instruction results to architecture state in
order, even if this is not the case during normal execution. To maintain this impression, processors
employ reordering techniques for instruction commit or mechanisms for reversing the effect of any
instructions following the one that caused the exception [SP88].

Vector architectures introduce an additional level of difficulty to implementing precise ex-
ceptions. A vector instruction defines a large number of element operations. Each operation modifies
the architecture state and may generate an exception condition for the whole instruction. Any prac-
tical implementation of vector hardware requires several clock cycles to execute tens of element
operations. Therefore, a vector processor must handle instructions that involve a large amount of
state and for which a long period is necessary to resolve their exception behavior. Moreover, even for
a microarchitecture with in-order issue like CODE, chaining of vector instructions and parallel execu-
tion on multiple cores leads to out-of-order execution and completion. The (i)-th element operation
for a vector instruction may execute well before the (i+10)-th operation for an instruction earlier
in the program order. Consequently, supporting precise exceptions while processing instructions at

84

maximum speed can be more complicated for vector designs than for scalar processors.

7.2 Vector Architecture Support for Precise Virtual Memory

Exceptions

The definition of precise exceptions requires that if any of the element transfers for a load
or store instruction generates a translation fault, none of the element operations described by the
instruction should modify the architecture state. This definition places hard requirements on the
size of the TLB used for storing physical to virtual address mappings in a vector processor.

In order to guarantee forward progress, the TLB must have enough entries to map the
maximum number of virtual memory pages accessed by one vector load or store instruction. Oth-
erwise, if an instruction accesses a number of virtual pages larger than the number of TLB entries,
a mapping fetched to translate an address for one element will evict the mapping for another ele-
ment address, leading to an infinite sequence of virtual memory exceptions (livelock). With vector
registers storing dozens of elements for narrow data-types and indexed loads or stores being able to
access a separate memory page for each element, the minimum TLB size can be excessively large
for most embedded implementations. Moreover, the TLB must typically be a little larger than the
absolute minimum in order to reduce the time to select a TLB entry for a new address mapping
that will not overwrite the mapping used for another element transfer in the same instruction.

To eliminate the need for a large vector TLB, we propose the following definition for precise
exceptions for vector load and store instructions in the VIRAM architecture:

“A vector load-store instruction that raises a virtual memory exception completes all
element transfers up to and not including the first element that caused a translation
error. All preceding instructions complete their execution and no following instruction
makes any modifications to the architecture state.”

The proposed definition maintains the same behavior with the original one for all instruc-
tions preceding or following the faulting one, but allows the faulting memory instruction to commit
part of its result. For example, if the 10-th and the 15-th element operation in a vector load cause
a TLB miss, the processor completes the memory transfers for the first 9 elements and modifies the
corresponding element storage in the destination register. All other element transfers starting with
the 10-th are canceled and do not modify the architecture state in any way.

The modified definition enables vector processors to implement precise virtual memory
exceptions and guarantee forward progress for vector load-store instructions even with a single TLB
entry. When an instruction causes an exception, we can overwrite the TLB entries with mappings for
the element transfers that have completed, without triggering translation errors for these elements
when the process restarts. Each time a virtual memory exception for a vector instruction is processed,
at least one more element operation will successfully complete before another exception occurs.
Therefore, the TLB size is no longer a hard requirement but an implementation trade-off between
hardware cost and performance. That is, a large, fully associative TLB occupies a significant amount
of area but also reduces the frequency of TLB misses on vector memory accesses.

One control register is necessary to enable the operating system to resume the interrupted
process by simply restarting the faulting instruction. On virtual memory exceptions, the processor
updates this register with the number of the first element for which the address translation failed.
When the interrupted process restarts, the same register indicates that the vector memory instruction
must resume from the specified element number. All following vector instructions in the resumed
process, will execute normally starting from element 0. If the operating system is about to resume
a process that was not interrupted by a virtual memory exception, it must set the control register
to zero.

85

7.3 Precise Virtual Memory Exceptions in CODE

The simplest way to implement precise virtual memory exceptions in CODE, and any other
microarchitecture, is to revert to sequential execution on every vector memory instruction. We could
stop issuing and processing following instructions until the load or store instruction completes address
translation without errors [Asa98]. Even though this approach is simple and correct, it can reduce
performance to unacceptable levels. It underutilizes arithmetic units during address translation and
may lead to expensive pipeline draining on every load or store instruction. This section explores
an alternative approach that implements precise exceptions in CODE without significantly affecting
the sustained performance of the vector processor.

7.3.1 Hardware Support

The key to supporting precise virtual memory exceptions is to maintain in-order completion
of vector instructions with respect to load and store operations. The following features are necessary
to achieve this ability without prohibiting parallel instruction execution in the vector cores:

• We must be able to preserve the old values of any architecture state modified by instructions
following a load or store instruction, until we know that the memory instruction will not raise
any virtual memory exceptions.

• When a memory instruction raises an exception, we must be able to restore the old values in
the architecture state affected by instructions following the one that generated the exception.

• We must be able to report virtual memory exceptions for vector instructions in strict program
order.

We can use the local vector registers in the vector cores and the renaming capabilities of
issue logic in CODE to meet the above requirements. Unallocated vector registers in the various
cores can store the values of any operands modified by vector instructions without eliminating the old
values, until we know that previously issued memory operations can complete without exceptions.
If an exception occurs, we can restore the old values by reinstating the proper mappings in the
renaming table of the issue logic. Therefore, the new functionality required to support precise
virtual memory exceptions is a mechanism for revocable renaming and a technique for selecting
when we must preserve the old values in the architecture state. We can implement both in the
vector issue logic (VIL) without any changes in the organization of vector cores.

Figure 7.1 presents the two data structures added to the VIL to implement precise virtual
memory exceptions. The update queue implements an in-order history buffer for changes to the
renaming table [SP88]. Each entry describes one instruction issued to the vector cores, including
its program counter (PC) and its annotated description. The safe bit indicates if the instruction
will execute without causing exceptions, while the fault bit is set if the instruction has generated a
virtual memory exception. The last field specifies the first element that caused an exception for a
load-store instruction. The guard list is a bit mask with one bit per vector register in the instruction
set. If the corresponding bit is set, an instruction that modifies the value or location of the vector
register must preserve its old value. When the VIL processes a new vector memory instruction, it
sets all bits in the guard list to indicate that future instructions must preserve the old values of any
registers they modify until the memory instruction completes address translation.

The modified VIL processes vector instructions in the following way. It lookups up all
instruction operands in the guard list. If the instruction changes the value or location of any
operands with the corresponding guard bit set, the VIL allocates new local vector registers for
them and does not deallocate the local vector registers with the old values or at the old location.
Consequently, the VIL will preserve the old architecture state for these registers. Since following

86

Counter

Tail
...

Load/Store

0

1

2

Guard

1

1

1

3

31

.
Head

0

...

1

..
...

...

...
...

..

.

...
...

.
.

.

Guard ListUpdate Queue

2
Architectural

Register

PC Safe Fault Instruction

0 0 −−
0 −−

−−

0x30
0x34
0x38
0x3c 1 0

1
0 0

vld $vr5, address1
vadd $vr1,$vr21,$vr20
vld $vr16, address2
vsub $vr2,$vr16,$vr17

Element
Faulting

−−

Figure 7.1: The data structures for implementing precise virtual memory exceptions in CODE. The
update queue is a circular FIFO buffer with head and tail pointers maintained in registers. An
up/down counter tracks the number of load or store instructions currently in the queue. The guard
list indicates the architectural registers for which the processor must preserve the old values. On
reset, the update queue is empty and all bits in the guard list are set to zero.

instructions should not preserve the new architecture state for these registers unless a new load
or store instruction is issued, the VIL can clear the corresponding entries in the guard list. Upon
issuing the instruction to the proper core(s), the VIL makes the necessary updates to the renaming
table and pushes its description in the update queue. If the instruction is not a memory one, the
safe bit is automatically set and the fault bit reset. For load-store instructions, the VIL clears both
fields and waits for the selected core to set one of them when the instruction completes address
translation or causes an exception.

On every clock cycle, the VIL examines the head of the update queue, which indicates the
next instruction in program order for which exception behavior can be resolved. If its exception
behavior is not available at the time, the VIL has to wait. Non-memory instructions cannot cause
virtual memory exceptions. The VIL can remove them immediately from the queue and deallocate
any local vector registers that hold old values for operands modified by these instructions. The
same holds for vector load and store instructions that complete without exception. If the up/down
counter indicates that are no more memory instructions in the update queue, the VIL can clear all
entries in the guard list to indicate that old architecture state does not have to be preserved any
more.

If the head of the queue describes a load-store instruction with translation errors, the
VIL raises a virtual memory exception. It copies the program counter and the number of the
first element transfer that generated an error to the corresponding control registers for exception
processing. It also triggers a hardware finite state machine that uses the queue contents to undo all
vector instructions following the one that caused the exception. The state machine processes one
queue entry per cycle, starting from the tail, and uses the annotated instruction descriptions to undo
the renaming mappings and new local vector register allocations. The state machine preserves the
updates of the faulting instruction because the new definition for precise virtual memory exceptions
allows for partial completion. At the end, the state machine flushes the queue and resets the bits in
the guard list.

Because the update queue works as a history buffer for modifications to control data struc-
tures, the VIL uses the information it contains only when an exception occurs. The latest location
of all architectural registers is always available in the renaming table. A two-ported register file used
as a circular buffer is sufficient to implement the queue. On the other hand, if the update queue
operated as a re-order buffer that allowed the modifications by an instruction to take place after
exceptions are resolved in preceding instructions, the VIL would need to check the update queue in
parallel with the renaming table for the location of instruction operands. Each queue entry would

87

need a set of comparators for these checks and priority encoders would be necessary to select the
most recent entry with a valid mapping for a specific architectural register. A multi-ported, content-
addressable array would be necessary to implement the queue in his case, which is complicated to
design and is rarely available in design libraries for semiconductor processes. On the other hand,
the re-order buffer requires no state machine for restoring architecture state. However, the state
machine is negligible in terms of area when compared to the re-order buffer itself, and we can overlap
the time required for its operation with the initialization of the operating system exception handler.

7.3.2 Implications to Performance

With the addition of the update queue and the guard list, the CODE microarchitecture
can implement precise virtual memory exceptions while executing several instructions in parallel in
the vector cores. However, the modified function of the VIL introduces new stall conditions that
can lead to reductions in sustained performance.

When an instruction modifies the value or the location of a vector operand, the VIL must
preserve the old values until any previously issued memory operations complete address translation.
The processor cannot use the local vector register that temporarily stores preserved values for the
instruction operands of any new instructions. Consequently, the system may run out of vector
registers in one or more vector cores, causing the VIL to stall until older instructions retire from
the update queue and deallocate the local registers that store old values for their operands. In
addition, vector store instructions cannot transfer any elements to memory until all previous load-
store instructions complete address translation, which generates additional pressure for local vector
registers in the load-store cores. The VIL will also stall if the update queue is full, even if it could
otherwise issue the instruction to a vector core.

We can reduce the performance loss due to the new stall conditions at the cost of higher
area overhead in the vector cores and the VIL. Additional local vector registers in each core reduce
the probability of running out of unallocated registers for new instructions. Similarly, we can increase
the number of entries in the update queue. Alternatively, we can accelerate the address translation
process for vector load-store instructions in order to discover their exception behavior faster and
reduce the number of cycles each instruction spends in the update queue. The hardware resources
necessary for this purpose are additional address generators, TLB and micro-TLB ports, and entries
in the address queues in the load-store cores.

7.4 Evaluation of Performance Impact

This section provides a quantitative evaluation of the impact on performance of the new
stall conditions introduced by the logic that implements precise virtual memory exceptions in CODE.
In other words, we evaluate the performance penalty regardless of whether an exception occurs or
not. We do not measure the performance of exception handlers or context switching because these
issues are outside of the scope of this chapter. Measurements of handler performance would also
require the availability of a full-scale operating system and the use of larger applications instead of
the EEMBC benchmarks.

Table 7.1 presents the CODE configuration used for this study. It is similar to a single-lane
VIRAM-1 system in terms of hardware complexity (area) and memory system. It includes an 8-entry
update queue for precise virtual memory exceptions support. We vary the number of local vector
registers (r) in the load-store and two integer cores, because we want to evaluate the number of
local registers necessary to mask the performance loss due to stalls related with the logic for precise
exceptions.

Figure 7.2 presents the percentage of performance lost with each benchmark when we enable
the hardware support for precise virtual memory exceptions. With r = 4 local vector registers per

88

15

13

7

4 4

9

0 0

16

2

0

4

0 0

6

1 1
0 0

1
0 -2 0-2

-4

0

4

8

12

16

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Average

S
lo

w
d

o
w

n
�(

%
)

r=4 r=8 r=12 r=16

10

6

1

12

9

7

0 0
1

3

1
0 0

1
0 0

1
-1-2 0 0-2 0 0

-4

0

4

8

12

16

Autocor Convenc Bital Fft Viterbi Average

S
lo

w
d

o
w

n
�(

%
)

r=4 r=8 r=12 r=16

Figure 7.2: The performance loss (slowdown) due to hardware support for precise virtual memory
exceptions in CODE. For each benchmark, we compare the execution time of a CODE configuration
with a certain number of local vector registers per core (r) to that of the same configuration with
the support for precise virtual memory exceptions enabled. The last group of columns presents the
average slowdown for the five benchmarks. Positive slowdown means lower performance with precise
exceptions support. Negative slowdown means higher performance with precise exceptions support.
For Cjpeg and Djpeg, we only measure the vectorized functions of the benchmarks.

89

VIL Load balancing core selection policy
Random register replacement policy
8-entry update queue

Vector 1 LDFull core (1 address generator)
Cores 1 IntFull core

1 IntSimple core
1 ArithRest core
1 State core

Lanes 1 (64-bit)
Memory 8 DRAM banks
System 1 sub-bank per bank

64-bit crossbar with 2 cycle latency

Table 7.1: The CODE configuration used for evaluating the performance impact of precise virtual
memory exception support. The configuration resembles the hardware complexity of a VIRAM-1
system with a single lane but without floating-point datapaths. The timing characteristics of the
memory system are identical to that for VIRAM-1. The number of local vector registers in the one
load-store core and the two integer cores varies in this study. The number of local vector registers
for the ArithRest is set to r = 4. The number of local vector registers in the State core is r = 8 or
as many as necessary to ensure that the whole system includes 32 vector registers across all cores.
For details about the exact capabilities of the various cores, refer to Table 6.1 (page 65).

core, the performance loss varies from 4% to 16%. With r = 8 local vector registers, the number
recommended for minimum inter-core communication (see Chapter 6.7, page 76), the performance
loss drops below 1% for seven out of ten benchmarks. The small impact of precise exceptions support
to performance is due to two reasons. First, we only maintain old architecture state after vector
load and store instructions, which reduces significantly the number of local vector registers used for
this purpose. Second, most of the times when the VIL must stall instruction issue due to insufficient
space in the local register files or the update queue, the instruction queues in the vector cores have
approximately 2, for r = 4, or 4, for r > 4, instructions in their instruction queue (IQ). Hence, the
vector cores can proceed with instruction execution and the real impact of the VIL stalls to the
overall performance is minimal. From Figure 7.2 one can also conclude that 8 entries in the update
queue are sufficient. A smaller number of entries would not lead to noticeable area or energy savings.

Filter is the only benchmark that requires r = 16 local vector registers per core before the
overhead of precise exceptions becomes less than 1%. This behavior is due to the many architectural
registers it references in its code and the large number of inter-core register transfers it generates
(see Chapter 6.7, page 76). The performance loss is actually larger as a percentage for r = 8 than
for r = 4 local vector registers. The configuration without precise exceptions support for r = 8
can already eliminate a large portion of the inter-core transfers, which is not the case if some local
registers are used to preserve old values. On the other hand, for r = 4 the number of inter-core
transfers is quite large regardless of the support for virtual exceptions.

It is interesting to notice in Figure 7.2 that enabling precise exceptions support leads to
higher performance (negative slowdown) for some cases with r > 4 for Djpeg, Fft, and Viterbi.
The unexpected result is due to the interaction of the additional control logic with the policy for
core selection. Stalls related to precise exceptions allow the VIL to postpone the core selection for
integer instructions. At a later time, the load balancing decision can be more accurate as it reflects
more the number of cycles it takes to execute the instructions assigned to each core as opposed to
the number of instructions assigned to each core. In any case, the outcome of this interaction is
practically insignificant.

90

18

41

11 11 10

18

6

2

17

5 4
7

3 2

8

2
0

2 2
0

-10 -2-1

-4

4

12

20

28

36

44

Rgb2cmyk Rgb2yiq Filter Cjpeg Djpeg Average

S
lo

w
d

o
w

n
�(

%
)

r=4 r=8 r=12 r=16

16

10

1

14

11 10

0 0
1

6
3 2

0 0
1 1 0 00 0

1
0 0-2

-4

4

12

20

28

36

44

Autocor Convenc Bital Fft Viterbi Average

S
lo

w
d

o
w

n
�(

%
)

r=4 r=8 r=12 r=16

Figure 7.3: The performance loss (slowdown) due to hardware support for precise exceptions for both
virtual memory and arithmetic faults in vector instructions. For each benchmark, the reference
point is the performance of the simulated CODE configuration without any support for precise
exceptions. The last group of columns presents the average slowdown for the five benchmarks.
Positive slowdown means lower performance with precise exceptions support. Negative slowdown
means higher performance with precise exceptions support. For Cjpeg and Djpeg, we only measure
the vectorized functions of the benchmarks.

91

Finally, Figure 7.3 presents the performance impact from extending the proposed mecha-
nism in order to support precise arithmetic exceptions for vector instructions as well. With almost
every vector instruction being the likely source of an exception, the VIL must frequently preserve
the old values of architectural registers, which places additional pressure on the local vector regis-
ters in each core. Consequently, the performance loss with r = 4 vector registers per core becomes
significantly higher and reaches 40% for Rgb2yiq. With r = 8 vector register per core, however, the
degradation of performance is negligible for the smaller benchmarks (Autocor, Convenc, and Bital)
and less than 6% for the remaining applications, excluding Filter. With r = 12, the overhead
is 2% or less except for Filter, which experiences an 8% performance loss. Hence, the proposed
mechanism can also support precise arithmetic exceptions for vector instructions with only a small
increase in performance or area overhead over the base case for precise virtual memory faults.

Nevertheless, it is important to keep in mind that enabling any support for arithmetic
exceptions can lead to dramatic performance loss in real-time applications, due to the high overhead
of running operating system handlers for arithmetic exception processing. Hence, precise arithmetic
exceptions should be optional.

7.5 Related Work

The problem of precise exceptions came up with the first pipelined processors [Buc62].
The solution suggested in several early designs was to equalize the pipeline lengths for all functional
units and allow instructions to update architecture state and report exceptions only in the final
stage [Amd81, War82]. In [SP88], Smith proposed three basic methods for implementing precise
exceptions in high performance processors: the re-order buffer, the history file, and the future file.
All modern superscalar processors use re-order buffers to support precise exceptions, while simpler
designs and VLIW architectures usually employ the pipeline equalization technique [HP02, PH98].
The update queue in CODE is practically a history file for updates to the renaming table.

Despite the implications to software development, some older commercial processors imple-
mented imprecise exceptions under some circumstances [AST67, Tho70, HT72, Con81]. A common
mechanism for handling imprecise exceptions is to allow software to save and restore machine-
dependent pipeline state [Con81, HJBG82, Dig96, KGM+00]. In [MV96], Modgill and Vassiliadis
review a number of software and hardware techniques for defining and implementing imprecise ex-
ceptions in ways that are manageable for software.

Several vector computers do not support virtual memory due to the difficulty of implement-
ing precise exceptions [Rus78, Tho70]. This approach is acceptable in the supercomputing domain,
where a single application runs for long periods and maximum performance is more important than
ease of software development. Some vector processors support virtual memory [Jon89, UIT94], but
in most cases in a restricted mode that eliminates virtual memory exceptions for vector instructions.
For example, the processor may need to keep locked in main memory all the pages accessed by vector
instructions [HL96]. In [Asa98], Asanovic proposed a decoupled vector pipeline that supports precise
memory exceptions by stalling all instructions until preceding memory operations complete address
translation, but did not evaluate the impact of this technique on performance. Espasa explored a
vector architecture with out-of-order issue capabilities that uses its re-order buffer to support precise
exceptions for all error sources including virtual memory [Esp97, EVS97]. This processor preserves
the old values of any vector registers modified by arithmetic or memory instructions until their
execution completes without faults. Espasa demonstrated that doubling of the number of physical
vector registers available in this design was necessary in order to limit the performance overhead of
precise exceptions support to 5%.

92

7.6 Summary

In this chapter, we presented at set of complimentary architectural and microarchitectural
techniques for efficient implementation of precise virtual memory exceptions in vector microproces-
sors. The architectural enhancement involves modifying the definition of precise exceptions to allow
partial completion of the faulting instruction. The microarchitectural technique involves the use of
local vector registers in the vector cores in CODE to maintain the old values for operands of vector
instructions until we know that any preceding loads and stores will complete without exceptions.
We can implement this technique with a simple extension to the VIL block without affecting the
structure or operation of the vector cores.

We demonstrated that the performance impact of precise exceptions support is less than
15% for CODE implementations with 4 local vector registers per core. With 8 local vector registers
or more, there is no noticeable performance loss due to the support for precise virtual memory
exceptions.

93

Chapter 8

Embedded Memory System

Architecture

“The advantage of a bad memory is that someone enjoys

several times the same good things for the first time.”

Friedrich Nietzsche

As the computing power of microprocessor chips improves at exponential rates, the lagging
performance of memory systems becomes a serious bottleneck [HP02, SN96]. As a result, modern
microprocessors devote an increasing percentage of their die area to techniques that improve memory
latency and bandwidth, such as multi-level caches, prefetching mechanisms, and stream buffers
[PK94, CB94]. However, caches are not the obvious remedy for the memory performance problems
in a vector processor for embedded multimedia applications. Video and sound processing kernels do
not always exhibit high degrees of temporal locality in their data references. In addition, the cost
of large, multi-level caches is often too high for embedded applications. This chapter explores the
design of high performance memory systems for vector microprocessors based on embedded DRAM
technology. Even though embedded DRAM is not the only alternative for this purpose, it has the
potential to provide high memory bandwidth in a cost-efficient and highly integrated manner.

Section 8.1 explains the memory performance issues in vector microprocessors. Section 8.2
introduces embedded DRAM technology, along with its major benefits and challenges. Section 8.3
presents the design options available to architects of embedded DRAM memory systems for vector
microprocessors and discusses how they affect efficiency in terms of latency, bandwidth, energy
consumption, and cost. Section 8.4 continues with a quantitative evaluation of embedded DRAM
memory systems for the CODE vector microarchitecture. Finally, Section 8.5 reviews related work
in memory systems for vector processors.

8.1 Memory System Background

Figure 8.1 presents the processor-memory performance gap, the fundamental reason for
which main memory is a serious performance bottleneck for modern computer systems [HP02].
Microprocessor architectures and manufacturing processes have been optimized for maximum per-
formance. On the other hand, the organizations and manufacturing processes for DRAM, the ba-
sic technology for main memory, have been optimized for minimum cost and maximum capacity
[Prz94, Pri96]. The consequence is a gap between processor performance and memory latency that
grows each year at an exponential rate. A main memory access that took one processor cycle in 1980
requires several hundreds of cycles in 2002. Regardless of the degree of decoupling or out-of-order

94

1

10

100

1000

10000

100000

1980 1983 1986 1989 1992 1995 1998 2001 2004

Year

P
er

fo
rm

an
ce

Processor

Memory

Figure 8.1: The processor-memory performance gap [HP02]. Using the 1980 state-of-the art as the
baseline, the processor performance has been improving by 35% per year until 1986 and by 55% per
year thereafter. On the other hand, the access latency of DRAM main memory has been improving
by merely 7% per year. Note that the performance axis uses a logarithmic scale to capture the size
of the gap between processor and memory.

execution available in the processor, it is impossible to tolerate this kind of memory latency without
a devastating reduction in performance due to data dependencies and the associated stalls.

The mainstream solution to the problem of memory latency has been hierarchies of caches
[Smi82]. Caches exploit the temporal and spatial locality in the address stream of applications in
order to maintain frequently accessed data in small SRAM structures close to the processor that
allow for quick references. Virtually every processor chip in 2002 includes at least one level of
instruction and data caches. In most cases, caches occupy at least 50% of the processor die. For
high-end processors that integrate multiple levels of high speed, high capacity SRAM arrays, caches
occupy as much as 80% of the die area [Gre00].

The memory performance problem is slightly different for vector processors. They can
exploit the well-known memory access pattern of vector instructions to (pre)fetch multiple vector
elements per memory access, which allows them to tolerate relatively higher memory latencies than
scalar processors. However, the consequence is that high memory bandwidth becomes an important
requirement. Caches can easily support low latency in the presence of access locality, but cannot
provide high bandwidth for strided and indexed accesses without using expensive, multi-ported or-
ganizations. Several studies have demonstrated that either caches provide limited performance gains
for vector processors or extremely expensive cache organizations are necessary for consistent perfor-
mance improvements [KSF+94, FP91, HS93, GS92]. Consequently, the memory system for vector
supercomputers typically consists of hundreds of SRAM chips, organized in a multi-bank memory
system [ABHS89, Cra93]. Even though this approach eliminates the problem of DRAM latency, it is
prohibitively expensive for vector processors for embedded systems in terms of manufacturing cost,
system size, and power consumption.

The streaming nature of multimedia data is another reason caches are not appropriate for
an embedded media-processor. Real-time applications typically process each video frame or audio
sample just once before discarding it for the next set of inputs [DD97, CDJ+97]. Hence, temporal
locality, a basic premise for the success of caching, is significantly limited. The effect of streaming
accesses has motivated the inclusion of special hardware in several commercial processors that allows
for bypassing the caches and eliminating the power consumption and lookup latency they introduce
for streaming data. A vector processor further reduces the usefulness of caches with multimedia

95

programs, because vector registers capture a large degree of the spatial locality available. However,
we should note that some classes of input data to multimedia programs are amenable to caching.
Examples include the dictionary data in speech recognition applications and the texture information
in 3-D graphics pipelines.

In summary, to match the requirements of a vector microprocessor for embedded multime-
dia applications a memory system must have the following characteristics:

• High memory bandwidth for parallel element transfers for sequential, strided, and indexed
access patterns.

• Moderate access latency for non-vectorizable access patterns or references to short vectors.

• Low energy consumption, especially for sequential streams.

• Low implementation cost to make the overall system appropriate for consumer products.

Furthermore, we want the memory system to exhibit similar scalability characteristics with
the vector processor, for which we can easily scale the performance, energy consumption, and area
by allocating the proper number of vector cores or lanes. Ease of scaling allows designers to match
the memory system to the specific requirements of the vector processor at the minimum possible
cost or complexity.

8.2 Embedded DRAM Technology

Embedded DRAM technology attempts to merge the manufacturing processes for high
speed logic circuitry and high capacity DRAM memory. With such a merged process, we can exploit
the increasing densities of CMOS chips to integrate on a single die a microprocessor and a memory
system large enough to be part of the main memory, not just a cache.

The key benefits of logic-DRAM integration over the traditional approach closely match
the requirements for memory systems for embedded vector processors [PAC+97]:

• Higher bandwidth: The single-chip integration allows us to eliminate the narrow, off-chip
bus between the processor and external memory. Instead, we can use a switched interconnect
with thousands of high speed wires that exposes to the processor a large percentage of the
bandwidth available at the sense amplifiers of the DRAM arrays.

• Lower latency: Servicing data references from the on-chip DRAM without accessing the
off-chip memory effectively halves the access latency. The integration also enables the cus-
tomization of the on-chip DRAM organization. The use of multiple independent memory
modules built from small arrays of DRAM cells reduces the access latency within each module
and allows overlapping of independent accesses across modules.

• Lower energy consumption: The elimination of the off-chip memory bus with its high
capacitance board traces also reduces the energy consumption for memory transfers [FPC+97].
Further reductions are possible by activating only the corresponding module in the on-chip
memory for each access. In addition, we can exploit the high bandwidth, low latency properties
of embedded DRAM to eliminate SRAM caches and save the energy consumed for cache
lookups.

• Reduced system size and cost: Even with 0.18µm CMOS technology, a chip of reasonable
size for commercial use (≤ 200mm2) can integrate a processor core of significant complexity
with over 10MBytes of embedded DRAM [SK99]. For several consumer products, this on-
chip memory capacity is sufficient and no external memory chips, boards, or controllers are

96

Basic Technology Parameters

Feature size 0.18µm bulk CMOS process with dual gate oxide
Interconnect 6 copper layers
Power supply 1.8V (3.3V, 2.5V, or 1.5 V for IO)
Gate delay 33psec (NAND-2, nominal conditions)
Power dissipation 0.02 µW/MHz/gate

Embedded DRAM Parameters

Capacitor type Burried-trench capacitor
DRAM cell size 0.56µm2

Refresh rate 0.4µsec
DRAM modules 1 Mbit to 16 Mbit with 1 Mbit minimum increment

2 Kbits per row in each 1 Mbit sub-array
Module interface 256 bits input, 256 bits output

separate address & control lines
Module testing Integrated BIST engine and test interface
Random access latency 20nsec
Page mode access latency 6.6nsec
Maximum bandwidth 4.8GBytes/sec/module

Table 8.1: The basic parameters of the IBM SA27E CMOS process for embedded DRAM technol-
ogy. In 2002, SA27E represents a mature embedded DRAM process for mainstream commercial
development. SA27E was the implementation technology for the VIRAM-1 prototype chip.

necessary. Although DRAM chips are cheaper per megabyte than embedded DRAM, the
elimination of external chips and boards leads to significant savings in system size, design
complexity, and development cost. In addition, with each technology shrink, the capacity
of on-chip memory will increase and will become sufficient for a larger number of embedded
applications.

We can develop an embedded DRAM process starting from either a DRAM or a logic
manufacturing process. The use of a DRAM process allows for the highest density for DRAM cells
but creates significant challenges to implementing high-speed logic. To minimize manufacturing
costs and power consumption, a DRAM process has transistor devices with long channels, thick
insulation layers, and high threshold voltages, which all hurt transistor speed. In addition, the
dynamic storage node in DRAM cells is typically a “stack capacitor” structure [Pri96], which rises
above the transistors and complicates the implementation of multiple levels of wiring. On the
other hand, a logic process combined with a “buried-trench capacitor” structure provides a better
starting point [SK99]. The capacitor extends bellow all other devices and creates no problem with
implementing fast transistors and multiple wiring levels using the same manufacturing steps with a
pure logic process.

Table 8.1 summarizes the features of the IBM SA27E CMOS process as an example of a
mature embedded DRAM technology based on a logic process. It supports the same level of logic
performance as a pure logic process for the same feature size. Designers assemble on-chip memory
systems in SA27E by allocating pre-designed DRAM modules. The mix of modules in terms of
the number and their size is a design-time option. For example, the VIRAM-1 chip includes eight
13-Mbit modules for a total memory capacity of 13 MBytes. This design methodology is extremely
flexible and allows designers to customize the memory system to the requirements of the processor
core on the die. The maximum bandwidth from each DRAM module is 4.8GBytes/sec, which is
equal to the peak bandwidth of three independent Rambus channels running at 800MHz [Cri97].

97

0.1

1

10

100

1997 1998 1999 2000 2001 2002

Year

C
el

l A
re

a
(u

m
^

2)
SRAM

Embedded DRAM

DRAM

0

10

20

30

40

0 200 400 600 800 1000 1200

Maximum Bandwidth (Gb/sec)

R
an

d
o

m
 A

cc
es

s
L

at
en

cy
 (

n
se

c)

Embedded DRAM

SRAM

Figure 8.2: The evolution of the cell area, random access latency, and maximum bandwidth for
embedded DRAM technology. The chart on the left compares the embedded DRAM cell size with
that for on-chip SRAM and conventional DRAM. All data points refer to memory arrays available
from IBM. The cell area axis uses a logarithmic scale. The chart on the right compares the latency
and bandwidth of DRAM modules to that of SRAM modules used in the cache system of high-
end processors. The data sources are papers presented in the International Solid-State Circuits
Conference in 1998 [IEE98], 1999 [IEE99], and 2000 [IEE00]. Some of the slower DRAM macros use
0.25µm or 0.35µm CMOS technology. All SRAM macros use 0.18µm technology.

The typical criticism for embedded DRAM technology is its efficiency in terms of cell area
and manufacturing cost when compared to off-chip DRAM and on-chip SRAM, respectively. Figure
8.2 presents the evolution of cell area for the SRAM, DRAM, and embedded DRAM technologies
available by IBM. Embedded DRAM cells are approximately two times bigger than cells in stand-
alone DRAM chips because they are optimized for low access latency and robust operation in the
same die with high-speed logic circuitry. However, embedded DRAM is still 6 to 10 times denser
than SRAM. Embedded DRAM memory systems can be large enough for use as main memory,
while on-chip SRAM can only provide sufficient capacity for caches. Figure 8.2 also shows that the
initial embedded DRAM modules available between 1998 and 2000 provided higher bandwidth than
SRAM modules for caches for high-end processors, despite the higher random access latency. Second
generation embedded DRAM modules have managed to reduce the latency gap with SRAM to a
factor of two, while offering 50 times higher bandwidth [TD+00].

The manufacturing of storage capacitors adds four extra lithography masks to an embedded
DRAM process like SA27E. Along with the time necessary for DRAM testing and repair, this
translates to approximately 30% higher cost per wafer. However, the overall cost for a system using
an embedded DRAM chip can be lower than that for a conventional system. The high capacity
of embedded DRAM enables designers to eliminate partially or completely the external memory
system along with the associate costs for the development or purchase of its components (boards,
DIMMS, and chipsets). In other cases, designers may be able to reduce the chip area by replacing
the on-chip SRAM memory with embedded DRAM that has the same capacity but occupies one
sixth of the area. In addition, the high bandwidth of embedded DRAM modules eliminates the need
for expensive off-chip memory interfaces such as Rambus. Therefore, embedded DRAM technology
can provide high bandwidth, integrated memory systems with low manufacturing cost for the overall
system.

8.3 Memory System Design Space for Embedded DRAM

Embedded DRAM technology allows for the integration of the main memory system on
the same die with the vector processor. Consequently, the chip designers have full control over the

98

organization and implementation of the memory system and the processor to memory interconnect.
Ideally, we want to construct an organization that meets the bandwidth and latency requirements of
the processor at the minimum energy and area overhead. This section introduces the most important
design parameters of the on-chip memory system and discusses how they affect its performance
(bandwidth and latency), energy consumption, and cost. Section 8.4 provides a quantitative analysis
for some of these options within the framework of the CODE microarchitecture.

Even though the discussion focuses on meeting the requirements of a vector processor, we
can extend the conclusions to any other processor architecture that relies on high bandwidth memory
systems, such as single-chip multiprocessors or multithreaded systems.

8.3.1 Memory Banks and Sub-banks

To simplify the design of memory systems and hide the complexity of assembling arrays
of DRAM cells, semiconductor vendors either provide a selection of predesigned DRAM modules or
support software that generates DRAM module configurations within certain constraints. Hence,
we can construct the memory system as a collection of independent memory banks, where each bank
is DRAM module with separate interface and control logic.

There are several advantages to a multi-bank memory system. Memory transfers that map
to different banks can execute concurrently, which allows the memory system to fetch in parallel
multiple elements for indexed and strided operations or overlap vector accesses with requests from
the scalar core and the IO system. Since each access involves circuitry in just one memory bank, the
access latency and energy consumption is lower in a multi-bank system than in a system organized as
a single bank with centralized control logic. Finally, multiple banks introduce a caching effect within
DRAM. Each access transfers a row of bits from the array of DRAM cells to the sense-amplifiers of
the bank. This data row is called open because the sense-amplifiers can directly serve any subsequent
accesses to the data it contains and, therefore, reduce the effective access latency [Prz94]. A multi-
bank memory system can have one open row per bank, which increases the probability of low latency
for access streams with spatial or temporal locality.

Nevertheless, a vector processor can quickly saturate a multi-bank memory system, espe-
cially for applications with indexed and strided accesses. For the VIRAM-1 chip, for example, the
vector processor can issue 4 addresses for vector elements per cycle to the 8 banks. Due to the high
latency of DRAM for random references, each access occupies a bank for 5 processor cycles. No
other access can use the same bank during the 5 cycles, unless it references data from the open row.
Hence, a truly random access stream for an indexed load can saturate the memory system in just
2 cycles, and the processor must stall for 3 clock cycles for every 8 element accesses it issues. The
frequency of stalls is even higher if many element addresses map to a small subset of banks.

We can increase the degree of concurrency in the memory system by using small DRAM
modules in order to implement a large number of memory banks. However, each memory bank
introduces a significant area overhead due to the interface, control, and testing circuitry it includes.
In SA-27E, the fixed overhead of a bank is equal to the area for 2 Mbits of DRAM. Hence, for a
fixed area budget, the effective capacity of the memory system decreases with the number of banks.
In addition, each extra bank introduces additional wiring and switching overhead in the processor
to memory interconnect.

A cost-effective way to achieve the performance benefits of a large number of banks is to
increase the degree of concurrency within each bank. To keep the access latency low, each DRAM
module consists of a collection of small memory arrays connected to a common data bus [YHO97].
With the addition of pipeline registers for addresses and control, we can turn each array into a
sub-bank that can execute accesses to its local data in a semi-independent manner. Figure 8.3
presents the block diagram of an embedded DRAM bank with multiple sub-banks. We can only
issue an access to one sub-bank per clock cycle, but we can overlap multiple accesses that map to
different sub-banks in a pipelined fashion. Consequently, sub-banks improve random bandwidth by

99

DRAM

Sub−bank

DRAM

Sub−bank Sub−bank

DRAM

Row
Cache

Address & Control

Internal Data Bus

Bank

Control
Address

Output Data

Input Data

Figure 8.3: The block diagram of an embedded DRAM bank with multiple sub-banks. Each sub-
bank includes pipeline registers for address and control that allow overlapped execution of accesses
that map to different sub-banks. The row cache is an optional SRAM-based array that caches the
most frequently accessed rows (see Section 8.3.3, page 100).

decreasing the frequency of bank conflicts and increasing the number of accesses that can execute
concurrently. In addition, each sub-bank has a separate open row, which reduces effective access
latency due to caching. The area overhead for introducing 4 to 8 sub-banks in a DRAM module is
typically less then 3%.

The appropriate number of banks and sub-banks for a specific vector processor depends on
the processor organization and the frequency of indexed and strided operations. A vector processor
produces a single address per cycle per load-store unit for unit-stride accesses, but typically has
multiple address generators for parallel element transfers for strided and indexed operations. To
reduce the frequency of bank conflicts, the number of banks should be approximately two times
larger than the average number of addresses issued per cycle by the vector coprocessor, scalar core,
and the IO system. For example, VIRAM-1 can issue 4 addresses for vector accesses and 1 address
for scalar or IO references per clock cycle. Hence, at least 8 DRAM banks are necessary in the
VIRAM-1 memory system to minimize bank conflicts for applications with frequent strided and
indexed accesses.

The area overhead of sub-banks is low and there is no reason to have less than 4 sub-banks
per bank. In any case, the total number of sub-banks across all the banks in the memory system
should be approximately two times larger than the product of the random access latency and the
average number of addresses issued per cycle. This number of sub-bank reduces the probability that
a strided or indexed stream will access a second row in some sub-bank, while it is busy servicing
an previous access to another row. For example, VIRAM-1 can issue up to 5 addresses per cycle
(4 vector, 1 scalar or IO) and the random access latency is 5 processor cycles. Hence, a total of
25 sub-banks are necessary, which translates to approximately 4 sub-banks in each of the 8 DRAM
banks.

We should stress again that the above recommendations for selecting the optimal number
of banks and sub-bank assume frequent use a strided and indexed accesses. If the applications use
mostly unit stride accesses, one should consider using a smaller number of DRAM banks in order
to reduce the area overhead and cost of the memory system. We should also note that the selection
of predesigned modules or the capabilities of the module generator provided by the process vendor
may significantly limit the number of memory configurations that are practical.

100

8.3.2 Basic Bank Configuration

Regardless of the number of sub-banks, there are two design parameters for the DRAM
bank that affect its performance and energy consumption: the width of rows and the width of
columns.

A DRAM sub-bank is a rectangular array of memory cells with capacity of 32 Kbits to 1
Mbit, depending on the size of the sub-bank. In the case of the IBM SA-27E technology, the 1 Mbit
array consists of 512 rows with 2048 memory cells per row. On every memory reference, we transfer
a whole row of data bits to the sense amplifiers of the array, even if the reference accesses only a few
bytes from the row. Subsequent references to data in the same row can execute faster because they
can skip the access to the DRAM array and they can read data directly from the sense amplifiers.
Hence, wide rows in DRAM arrays effectively implement prefetching for sequential accesses. Only
the few references that stretch to a new row will incur the additional latency for accessing the DRAM
array. On the other hand, if the access stream has little spatial locality, accesses to wide rows are
wasteful in terms of energy. For every memory reference, we transfer a large number of bits from the
array to its sense amplifiers, but only use a small fraction of them in the application. In addition,
wide rows and narrow data accesses complicate the implementation of error correction codes (ECC).

The maximum number of bits from a sub-bank row that we can transfer to the interface
of the DRAM bank and subsequently to the processor is called the column width. In practice,
the column width is set by the width of the internal data bus that connects the sub-banks within
a bank (see Figure 8.3). In the case of the SA27E technology by IBM, the column width is 256
bits, one eighth of a row. Wide columns implement prefetching for unit stride references as well,
since they allow the processor to access a large number of sequential elements in a single cycle. For
address streams with little spatial locality, however, very wide columns waste energy by transferring
unnecessary data. In addition, they complicate the design of the memory system because they
require a wide internal data bus within each bank, a wide bank interface, and a large number of
wires in the processor to memory interconnect.

A designer should select the row and column widths to optimize the latency and energy
consumption for unit stride references, the undoubtedly most common access pattern in vector
processors (see Table 4.4, page 31). To match the bandwidth of a load-store unit to the throughput
of the arithmetic units, the column width should be equal to the data width in the functional units
times the number of lanes in the vector processor. For example, VIRAM-1 includes 4 lanes with one
64-bit datapath for each arithmetic unit per lane, hence the column width should be at least 256
bits. This column width allows the load-store unit to produce with a single bank access as many
sequential elements as the functional units. The row size should be at least as long as the average
vector length times the element size in memory. For example, applications that run on VIRAM-1
frequently load a full vector (128 elements for 16-bit VPW) with 16-bit data from memory. Hence,
setting the row width to 2048 bits allows unit stride load and store instructions to experience the
latency and energy overhead of a row access only once on the average.

We should note here that there may be electrical reasons that limit the practical values
for the two parameters or that the process vendor may fix them both in the modules for a certain
embedded DRAM technology. The latter is the case for the SA-27E technology that we used for the
implementation of VIRAM-1. However, we engineered the vector coprocessor so that the optimal
row and column widths match the settings in the DRAM modules of SA-27E.

8.3.3 Caching in the DRAM Memory System

Several studies have concluded that the performance benefit from the use of traditional
cache hierarchies with vector processors is not proportional to the cost of implementing large SRAM
arrays [KSF+94, FP91, GS92]. However, we can improve the performance and energy efficiency of
the embedded DRAM memory system by including some amount of caching in each DRAM bank.

101

Amplifier
Sense

R
ow

 D
ec

od
er

���� ��

Update Buffers

DRAM CELL

ARRAY

Row
Address

Address
Column Column Decoder

Internal Data Bus

Select Row Buffer 0

Select Row Buffer 1

Select Row Buffer 2

Select Row Buffer 3

Figure 8.4: The block diagram of a DRAM sub-bank with four row buffers. The buffers are arrays
of static memory cells that connect to the output of the sense amplifiers of the DRAM array. Each
buffer can store a full DRAM row. A set of select lines controls the pass-transistors that connect the
row buffers to the column decoder. The column decoder selects the subset of the bits in a row that
will be transferred to the external interface of the DRAM bank. The pass-transistors between the
sense amplifiers and the row buffers provide isolation and allow accesses to the buffers while another
row is read, written, or refreshed in the DRAM array using the sense amplifiers.

The basic idea is to introduce some SRAM storage array or buffers that cache a large number of
frequently accessed DRAM rows and allow read and write references without incurring the latency
and energy overhead of retrieving a row from a large array of DRAM cells.

There are two alternative approaches to adding caches to DRAM banks. Figure 8.3 (page
99) presents the first alternative, in which we introduce a row cache close to the bank interface.
Each line in the cache can store a DRAM row. Figure 8.4 presents the second approach, in which we
introduce a number of row buffers at the sense amplifiers in each sub-bank. The row cache requires
no significant changes to the layout of DRAM sub-banks. For accesses that hit in the cache, the row
cache also eliminates the latency and energy consumption of the internal data bus that connects
sub-banks. However, the internal data bus must be wide enough to facilitate the transfer of a whole
row from the sub-banks to the row cache within a few clock cycles (one to four). The row buffers
require modifications to the basic layout of the DRAM sub-banks and do not eliminate the latency
and energy overhead of the internal data bus for accesses to cached data. However, row buffers
constitute a distributed cache across the DRAM sub-banks, which we can access with minimum
energy overhead. In contrast, the energy required to access a row cache with a large number of lines
may be equal or even larger than the energy saved by eliminating the DRAM array access and the
transfer on the internal data bus.

102

o
(a)

OffsetSubbank

c

Bank

SubbankBankRow

Column
bc

b

Bank

sr
Offset

Row

Column

Column

o

Offset(d)
rb s c o

Row

Offset

(c)

Column

r

Subbank

s

Bank

Subbank

(b)
r b s c o

Row
b

xorB

s
xorS

Figure 8.5: Four simple address interleaving schemes for an embedded DRAM memory system. The
figure assumes that the system has 2b banks, 2s sub-banks per bank, 2r rows per sub-bank, 2c

columns per bank, and 2o bytes per column. Each scheme presents the location of the bank, sub-
bank, row, column, and offset fields within a memory address. The most significant bit of the address
is the leftmost one. The VIRAM-1 prototype chip implements all four schemes with s=0. One can
construct several variations or combinations of the four schemes to address specific performance or
design issues in the memory system.

Both forms of caching require some control logic and a set of tags that determine which
rows should be cached and when an incoming access hits in the cache. The trade-offs for replacement
(LRU, MRU, random) and allocation policies (write allocate, write no-allocate) in cached DRAM are
the same as with traditional caches [HP02]. We can fully implement cache tags and control within the
DRAM bank with no modification to the rest of the memory system. Alternatively, we can expose
the existence of row caches or buffers to the processor and allow the load-store units to determine
the optimal caching policies based on the access characteristics of the applications. Commercially
available DRAM chips with integrated row caches like the NEC virtual-channel DRAM implement
the latter approach [MS+99].

8.3.4 Address Interleaving

The address interleaving scheme indicates the mapping between the address for an access
and a specific storage location in the memory system. In other words, it specifies the correspondence
between address bits and a set of numbers that identify the bank, the sub-bank, the row, the column,
and the column offset for the storage location. The choice of interleaving scheme has little impact on
the complexity of the circuitry required to implement it. Nevertheless, it has a significant effect on
performance and energy consumption as it determines the frequency of bank or sub-bank conflicts
and the probability of accessing data from open rows for a given address stream.

Figure 8.5 presents four simple interleaving schemes for an embedded DRAM memory
system. With scheme (a), a sequential address stream accesses a full row of data in each sub-bank in
every bank before visiting any sub-bank for the second time. We can retrieve multiple consecutive
vector elements with a single column access and use all data in an open row. Hence, scheme (a)
leads to maximum performance and energy efficiency for sequential accesses. However, scheme (a) is
inefficient for strided streams with very large strides because two addresses for consecutive elements

103

will probably map to different rows in the same sub-bank. Therefore, the two accesses cannot execute
in parallel or overlap. Large strides can be frequent in applications that operate on two-dimensional
arrays or image processing programs that use outer-loop vectorization. Scheme (b) alleviates the
inefficiency for strided accesses by performing an exclusive or operation between the bank and sub-
bank fields and fields xorB and xorS from the row number respectively, in order to determine the
exact bank and sub-bank to access. Consequently, two addresses that differ only in the low order
bits of the row field will map to different banks or sub-banks and can execute concurrently.

Interleaving scheme (c) in Figure 8.5 is appropriate for address streams with small strides
or indexed accesses to a small data structure. The addresses for two consecutive elements will map
either to the same column or to different banks and sub-banks. Small strides appear in applications
that handle color images, where the red, green, and blue components of each pixel require separate
handling.

Finally, scheme (d) accesses all bits within a sub-bank before moving to the next one for a
sequential access stream. In terms of performance, it is beneficial to applications with a single unit-
stride access stream or to programs with huge strides. The latter case occurs rarely in multimedia
applications. However, scheme (d) allows the use of a chip with non-repairable faults in its memory
system. We can disable a whole sub-bank or bank by mapping out a large consecutive region of the
physical address space, which is easy to handle at the operating system level.

The implementation of one interleaving scheme does not prohibit the use of any others.
The VIRAM-1 chip implements all the schemes in Figure 8.5. Since the 24 least significant bits of the
address are sufficient to address the 13 MBytes of on-chip memory, the two most significant bits from
the 32-bit physical address select the interleaving scheme. Schemes (a), (b), and (c) define the bank
and sub-bank number in the least significant portion of the address which does not change during
virtual to physical address translation. Hence, an application can use all three schemes by selecting
one scheme for each memory page. Pages with data accessed mostly with unit-stride instructions
can use scheme (a), while pages with frequent strided accesses can use scheme (b) or (c) depending
on the stride. Scheme (d) identifies the bank and sub-bank numbers in the most significant bits,
which change during address translation. To guarantee correct operation in the presence of memory
aliases, an application that runs with virtual memory enabled must use scheme (d) for all data and
code accesses or not at all.

8.3.5 Memory to Processor Interconnect

The memory to processor interconnect is an important component of the memory system.
The fact that the memory banks can execute in parallel or overlap a large number of sequential or
random accesses is of little importance if the interconnect does not have matching capabilities in
terms of bandwidth.

The memory interconnect transfers three types of information: addresses from the processor
to the memory banks, store data going in the same direction, and load data from the memory banks
to the processor or the IO system. Since the cost of wires reduces dramatically once the memory
system becomes part of the same die with the processor, it is preferable to use a separate interconnect
structure for each type. Separate paths for addresses, load data, and store data increase the degree
of concurrency of transfers, require simpler control, and have lower energy consumption due to the
elimination of multiplexing of independent sources of information on the same set of wires.

The structure of the memory interconnect depends on the exact organization of the vector
processor and the memory system. To support multiple independent accesses per cycle from the
vector processor, a form of crossbar for both data and addresses is necessary. The degree of par-
allelism in the crossbar depends only on the number of addresses that the processor can issue per
cycle and not on the number of banks or sub-banks in the memory system. An over-clocked bus or
a token-ring structure can provide cheaper alternatives to the crossbar. However, the over-clocked

104

bus introduces some complexity to handle the different clocks and the token-ring has higher latency
than the crossbar, unless we over-clock it as well.

Overall, the integration of the processor and the memory system on the same die and the
ability of a vector processor to tolerate moderate latencies allow the use of several alternative struc-
tures for the memory interconnect, including hybrid, ad-hoc, and pipelined schemes. For example,
the VIRAM-1 chip separates the eight memory banks in two groups of four and provides a crossbar
structure for each group. In any case, it is wise to use wide paths for data transfers, since this is a
cheap way to increase sequential bandwidth in an on-chip network. We can improve random band-
width by allowing multiple narrower transfers to use the same wide path if necessary. In addition,
the use of an interconnect structure with uniform latencies and conflict characteristics to all memory
banks simplifies significantly the design of its control and conflict resolution logic.

8.4 Memory System Evaluation

In this section, we use the EEMBC multimedia benchmarks to explore the interaction of
the CODE vector microarchitecture and memory systems based on embedded DRAM technology.
We focus on the two most important issues: the effect of memory latency and the optimal number
of DRAM banks and sub-banks. The other design options discussed in Section 8.3 have little impact
on the behavior of the EEMBC benchmarks. However, they can be significant for other applications
that make frequent use of large strides or use larger data sets.

8.4.1 Effect of Memory Latency

Several factors can lead to increased memory latency for vector element accesses in CODE:
the use of DRAM banks with slow timing parameters, bank and sub-bank conflicts, the use of
a processor to memory interconnect structure with high latency, or clocking the vector processor
significantly faster than the memory system. To explore the effectiveness of the microarchitecture
with tolerating high memory latency, we evaluate a CODE configuration with a memory system that
offers infinite bandwidth at fixed latency. This memory system never stalls an element access and
always returns the load data after a specific number of cycles. We vary the memory latency from 1
to 128 processor cycles in order to capture the behavior of both on-chip memory systems (latency
≤ 32) and off-chip memory systems (latency > 32). For example, the latency of the on-chip memory
system in VIRAM-1 is 8 processor cycles. It includes the address propagation, the memory access,
the data crossbar, and operations for sign extension and alignment. However, bank conflicts during
indexed or strided operations can increase the effective latency by up to three times.

Figures 8.6 and 8.7 present the effect of memory latency on the execution time of the
EEMBC benchmarks. For 8 out of 10 benchmarks, increasing memory latency from 1 to 32 cycles
leads to less than 15% increase in execution time. CODE is able to initiate most vector load
instructions early enough so that only a small portion of the memory latency is exposed to dependent
arithmetic instructions. This is an additional advantage to the inherent ability of vector instructions
to tolerate latency by amortizing the cost of initiating a memory access over a large number of
element transfers.

Cjpeg and Viterbi experience a higher increase in execution time (40%) for memory
latency of 32 cycles. Both benchmarks have a low ratio of arithmetic to memory operations, which
limits the ability of CODE to issue load instructions early in order to prefetch their data. In
addition, their code frequently requires that all input data are loaded at the very beginning of each
loop iteration. Furthermore, Cjpeg and Viterbi operate mostly on short vectors with 13 to 18
elements.

Overall, Figures 8.6 and 8.7 show that execution time increases slowly with memory latency.
Even with latency of 128 cycles, which occurs when a multi-gigahertz vector processor uses an off-

105

Rgb2cmyk

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory�Latency�(Cycles)

N
o

rm
al

iz
ed

�E
xe

c.
�T

im
e

Rgb2yiq

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory�Latency�(Cycles)

N
o

rm
al

iz
ed

�E
xe

c.
�T

im
e

Filter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Cjpeg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Djpeg

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Figure 8.6: The effect of memory latency on the execution time of the consumer benchmarks on
CODE. Memory latency is measured in processor cycles. It includes the delay of the DRAM bank
access and the latency of the processor to memory interconnect. The execution time is normalized
to that with memory latency of 1 cycle. Larger execution time implies lower performance. The
simulated CODE configuration has similar hardware resources to a single lane VIRAM-1 chip (see
Table 7.1, page 89) and includes r = 8 vector registers per execution or load-store core.

106

Autocor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Convenc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)
N

o
rm

al
iz

ed
 E

xe
c.

T
im

e

Bital

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Fft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Viterbi

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 16 32 48 64 80 96 112 128

Memory Latency (Cycles)

N
o

rm
al

iz
ed

 E
xe

c.
 T

im
e

Figure 8.7: The effect of memory latency on the execution time of the telecommunications bench-
marks on CODE. Memory latency is measured in processor cycles. It includes the delay of the
DRAM bank access and the latency of the processor to memory interconnect. The execution time is
normalized to that with memory latency of 1 cycle. Larger execution time implies lower performance.
The simulated CODE configuration has similar hardware resources to a single lane VIRAM-1 chip
(see Table 7.1, page 89) and includes r = 8 vector registers per execution or load-store core.

107

chip DRAM memory system, the execution time is only 1.5 to 2.8 times higher than that with single
cycle memory latency. Despite the lack of SRAM caches, decoupling allows CODE to hide most the
memory latency from both on-chip and off-chip DRAM systems, assuming sufficient bandwidth is
available.

We can draw several interesting conclusions from Figures 8.6 and 8.7 about the design
options in the memory system of a CODE microprocessor:

• The processor to memory interconnect in CODE must provide high bandwidth but not neces-
sarily low latency. Hence, a single cycle crossbar switch, like the one in VIRAM-1, is not the
only implementation option. Simple, pipelined structures, such as a circular ring, are viable
alternatives as long as they provide sufficient bandwidth for load and store data. For example,
replacing a single cycle crossbar with a ring with 4 to 8 cycles of propagation latency will
slowdown most benchmarks by less than 5%.

• We can clock the vector processor significantly faster than the embedded DRAM banks. Even
though this increases the effective latency of element accesses in terms of processor cycles,
decoupling can hide most of this latency and allow the performance improvement to closely
match the clock frequency of the processor. However, one should keep in mind that an increase
in the operating frequency of the vector processor leads to a proportional increase in its power
consumption.

• It is not prohibitive in terms of performance to use CODE with an off-chip, high bandwidth
memory system. Replacing an on-chip memory system with an 8-cycle latency with external
memory with 32 to 64 cycles latency (128 to 320 nsec for a 200 MHz CODE chip) leads to a
performance loss between 25% and 50%. Of course, supporting high memory bandwidth with
an external memory can be more expensive and less energy efficient. It typically requires the
use of advanced memory technology such as DDR or Rambus, as well as hundreds of pins on
the processor chip.

8.4.2 Number of DRAM Banks and Sub-banks

Figures 8.8 and 8.9 present the average memory latency for an element access as a function
of the number of banks and sub-banks per bank in the on-chip memory system of a CODE imple-
mentation. Ideally, we always perform column accesses to open rows, which lead to the minimum
memory latency of 1 processor cycle at minimum energy consumption. However, bank or sub-bank
conflicts can introduce memory stalls and access serialization that increase latency and reduce effec-
tive bandwidth. They also lead to higher energy consumption as they reduce the number of element
transfers that require only a column access to an open DRAM row.

Figures 8.8 and 8.9 show that for applications with unit stride accesses (Filter, Autocor,
Convenc, and Bital) 2 DRAM banks or 4 sub-banks in one bank are sufficient to eliminate most
conflicts and reduce memory latency to the minimum possible. For benchmarks with strides of three
to four bytes (Rgb2cmyk and Rgb2yiq) both 2 DRAM banks and 4 sub-banks per bank are necessary
for the same purpose. The exact value of the minimum memory latency for each benchmark depends
on the number of distinct DRAM rows it accesses and the amount of data used from each row.

For benchmarks with larger strides (Cjpeg, Djpeg, and Viterbi) or indexed accesses (Fft),
memory latency keeps decreasing as we introduce more DRAM banks or sub-banks per bank. It is
interesting to notice that we get approximately the same improvement by doubling the number of
banks or the number of sub-banks per bank in each case. Since the area overhead of sub-banks is
smaller than that of banks, we should always start by introducing additional sub-banks when trying
to improve the performance of the memory system.

108

Rgb2cmyk

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Rgb2yiq

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Filter

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Cjpeg

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Djpeg

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Figure 8.8: The average memory latency for an element access in the consumer benchmarks as
a function of the number of DRAM banks and sub-banks per bank. The latency is in processor
cycles and does not include the processor to memory interconnect. We assume that the timing
characteristics of DRAM are similar to those in the IBM SA27E technology used in the VIRAM-1
chip: 5 processor cycles for a random access and 1 cycle for a column access to an open row. The
simulated CODE configuration is described in Table 7.1 (page 89).

109

Autocor

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Convenc

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Bital

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Fft

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Viterbi

0

2

4

6

8

1 2 4 8

Number of Banks

M
em

o
ry

 L
at

en
cy

1 Sub-Bank 2 Sub-banks 4 Sub-banks 8 Sub-banks

Figure 8.9: The average memory latency for an element access in the telecommunications benchmarks
as a function of the number of DRAM banks and sub-banks per bank. The latency is in processor
cycles and does not include the processor to memory interconnect. We assume that the timing
characteristics of DRAM are similar to those in the IBM SA27E technology used in the VIRAM-1
chip: 5 processor cycles for a random access and 1 cycle for a column access to an open row. The
simulated CODE configuration is described in Table 7.1 (page 89).

110

8.5 Related Work

The existence of strong industrial standards and practices for the interface, form-factor,
and overall operation of off-chip DRAM has been a significant obstacle to major innovation in
main memory systems [PAC+97]. Consequently, the vast majority of research in the last decade has
focused on cache hierarchies and mechanisms for prefetching. However, embedded DRAM technology
gives processor designers full control of the main memory system organization and enables the use
of techniques for improving its bandwidth and latency characteristics.

Vector supercomputers have traditionally relied on multi-bank main memory systems with
SRAM chips to achieve high bandwidth at moderate latency. For example, the Cray C90 Y-MP uses
a total of 20,000 SRAM chips in its main memory system of 1024 banks [Cra93]. Consequently, the
main memory dominates the cost, system size, and power consumption for such supercomputers.
Several studies have examined the potential of various cache organizations for vector processors
[KSF+94, FP91, GS92]. In some cases, caches allow the reduction by two of the number of banks
in the system or the replacement of SRAM chips with DRAM without significant performance
reduction. More recently, Espasa studied a victim cache organization that reduces the memory
traffic due to register spilling for a vector architecture with few vector registers [Esp97]. Asanovic
proposed two “virtual processor” caches for histogram and rake access patterns in vector processors
but provided no data on their overall efficiency [Asa98].

DRAM chips that integrate some amount of SRAM caching have been commercially avail-
able for nearly a decade [H+90, Jon92, MS+99]. In [HS93], Hsu and Smith evaluated the potential of
cached DRAM chips in the main memory system of uniprocessor and multiprocessor vector systems.
They concluded that the use of cached DRAM increases the effective bandwidth of the memory
system by factors of about two to four when compared to systems using traditional DRAM chips.
Several researchers have evaluated the performance benefits of cached DRAM chips in the main
memory system or the third-level cache of scalar processors [ZZZ01]. They concluded that cached
DRAM can improve main memory performance by up to 30% and that it can replace SRAM in the
lowest levels of the cache hierarchy.

Interleaving schemes have also attracted a lot of theoretical and experimental research work
as a cost-effective method to reduce bank conflicts and improve the sustained bandwidth for vector
processors. The most important classes of interleaving schemes are linear data-skewing [Law75],
XOR-based [FJL85], permutation-based [Soh93], and pseudo-random [Rau91]. The interleaving
schemes discussed in this chapter belong to the first two classes that have the lowest cost since their
implementation requires no arithmetic operations or table lookups.

Several commercial chips for disk drive controllers, graphics accelerators, and networking
systems have successfully used embedded DRAM technology. However, the Mitsubishi M32R/D is
the only commercial microprocessor that uses embedded DRAM as main memory [Shi98]. Never-
theless, several academic projects have used embedded DRAM technology in prototype chips (Diva
[HKK+99], CRAM [ESSC99]) or simulation studies (FlexRam [KHY+99]) for embedded or super-
computing applications.

8.6 Summary

In this chapter, we explored the architecture of the memory system for vector multimedia
processors. We focused mostly on embedded DRAM technology which can match the requirements
of a vector processor by providing high memory bandwidth, at modest latency, and low energy
consumption. We discussed the various design options for memory systems based on embedded
DRAM technology and explored the trade-offs between performance and energy consumption.

We demonstrated that the CODE microarchitecture can efficiently hide large memory la-
tencies in the presence of high memory bandwidth. CODE can accommodate an increase in latency

111

from 8 cycles to 32 with a performance impact of less than 30%. We also established the importance
of banks and sub-banks for improving the performance and energy consumption of the embedded
DRAM memory systems. A multi-bank memory system with 8 sub-banks per bank can decrease
the effective memory latency by up to 7 times for both unit stride and strided benchmarks.

112

Chapter 9

Performance and Scalability

Analysis

“We all agree that your theory is crazy,

but is it crazy enough?”

Niels Bohr

In previous chapters, we introduced the CODE microarchitecture for vector processing
(Chapter 6), explored its ability to support precise exceptions (Chapter 7), and studied how it
interacts with memory systems based on embedded DRAM technology (Chapter 8). In this chapter,
we proceed with a detailed analysis of the performance and scaling potential of CODE.

Section 9.1 presents a quantitative comparison between the CODE to VIRAM-1 microar-
chitectures. Section 9.2 analyzes the impact of the inter-core communication network on the perfor-
mance of CODE. Finally, Section 9.3 evaluates the ability of CODE to exploit additional hardware
resources in the form of vector cores and vector lanes.

9.1 CODE vs. VIRAM-1

To facilitate a fair comparison between CODE and VIRAM-1, we set up a CODE config-
uration that occupies approximately the same area with VIRAM-1 for the same number of lanes.
Table 9.1 presents the characteristics of the CODE configuration. Even though the distributed vec-
tor register file in CODE allows for a higher clock rate than with VIRAM-1, we assume that the two
microarchitectures operate at the same clock frequency. We also assume the same memory system
for both designs, namely the one used in the VIRAM-1 prototype chip.

Figures 9.1 and 9.2 compare the performance of CODE and VIRAM-1 for the ten EEMBC
benchmarks. For all applications excluding Filter and Bital, CODE exhibits a performance ad-
vantage over VIRAM-1. Since the two microarchitectures include the same number of execution
datapaths, the performance advantage of CODE is due to decoupling and its effectiveness with
hiding the latency of memory accesses. The benefit of CODE is more obvious for benchmarks like
Rgb2cmyk, for which the delayed pipeline of VIRAM-1 suffers from frequent stalls from strided mem-
ory accesses. CODE, on the other hand, is able to issue load instructions for Rgb2cmyk early enough
and hides most stalls in the memory system from the execution cores. Nevertheless, the performance
gain of CODE is smaller with applications like Autocor, for which the delayed pipeline of VIRAM-1
is effective in hiding the moderate latency of its embedded DRAM memory system for unit stride
accesses.

113

VIL Load balancing core selection policy
Random register replacement policy

Vector 1 LDFull core (r = 8 local vector registers)
Cores 1 IntFull core (r = 8 local vector registers)

1 IntSimple core (r = 8 local vector registers)
1 ArithRest core (r = 4 local vector registers)
1 State core (r = 8 local vector registers)

Lanes 1, 2, 4, or 8 lanes with 64-bit datapaths
Communication 2 64-bit buses per lane
Network
Memory 13 MBytes in 8 DRAM banks
System 1 sub-bank per bank

crossbar interconnect with 2 cycles latency

Table 9.1: The CODE configuration for comparison with VIRAM-1. For the same number of
lanes, this configuration and a VIRAM-1 implementation without floating-point datapaths occupy
approximately the same area. We assume that the two microarchitectures operate at the same clock
frequency. We also assume that both designs use the VIRAM-1 memory system based on the IBM
SA27E embedded DRAM technology. For details about the exact capabilities of the various cores,
refer to Table 6.1 (page 65).

As expected, VIRAM-1 outperforms CODE for the Filter benchmark. The register access
pattern of Filter leads to a large number of inter-core register transfers in CODE, which reduces its
performance and energy efficiency. Bital performs unit stride accesses and series of short reductions.
The instruction sequence for a reduction is strictly sequential and cannot benefit from decoupling.
It also requires inter-core register transfers between the execution cores for arithmetic operations
and the core for permutations, that can generate stalls on the communication network.

It is also interesting to notice in Figures 9.1 and 9.2 how the performance of CODE scales
with the number of lanes. When scaling to 2 or 4 lanes, CODE behaves similarly to VIRAM-1. The
performance improvement is almost proportional to the number for lanes for applications with long
vectors, such as Rgb2cmyk and Rgb2yiq. The benefit from additional lanes is significantly smaller
for applications with short vectors such as Viterbi and Djpeg. When scaling to 8 lanes, however,
arithmetic instructions occupy the execution cores for a small number of cycles, hence there is less
time to hide the impact of memory latency or inter-core transfers through decoupling. As a result,
CODE performs slightly worse than VIRAM-1 for Cjpeg in the case of 8 lanes.

Figure 9.3 presents the composite EEMBC scores for the two microarchitectures when
operating at 200 MHz. CODE outperforms VIRAM-1 in both benchmark categories, regardless of
the number of lanes. For the consumer benchmarks, the benefit from CODE is higher (20% to
35%) because these benchmarks access large data sets and frequently use strided accesses. The
telecommunications benchmarks, on the other hand, operate on small data sets, use unit stride
accesses almost exclusively, and include short reductions. Hence, the benefit from decoupling in
CODE is limited to approximately 12%.

We should note here that the comparison results are slightly skewed in favor of VIRAM-1.
With both microarchitectures, we use executables that have been optimally tuned in assembly for the
VIRAM-1 pipeline. CODE relies less on static scheduling due to its ability to reorder instructions
that execute in separate cores. However, better scheduling of instructions that execute in the same
vector core could lead to slightly better results. One should also keep in mind that, apart from
the performance benefits, CODE provides significant advantages over VIRAM-1 in terms of energy
efficiency and design complexity (see Chapter 6.5, page 71). In addition, CODE can reach similar

114

Rgb2cmyk

0

4

8

12

16

20

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Rgb2yiq

0

4

8

12

16

20

1 Lane 2 Lanes 4 Lanes 8 Lanes
S

p
ee

d
u

p

VIRAM-1

CODE

Filter

0

4

8

12

16

20

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Cjpeg

0

4

8

12

16

20

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Djpeg

0

4

8

12

16

20

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Figure 9.1: The performance of CODE and VIRAM-1 for the consumer benchmarks as a function
of the number of lanes. We report performance as speedup over the VIRAM-1 implementation with
1 vector lane. For Cjpeg and Djpeg, we measure the performance only for the vectorized portion of
each benchmark.

115

Autocor

0

2

4

6

8

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Convenc

0

2

4

6

8

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Bital

0

2

4

6

8

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Fft

0

2

4

6

8

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Viterbi

0

2

4

6

8

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

VIRAM-1

CODE

Figure 9.2: The performance of CODE and VIRAM-1 for the telecommunications benchmarks as a
function of the number of lanes. We report performance as speedup over the VIRAM-1 implemen-
tation with 1 vector lane.

116

83.9

134.3

201.4

271.3

114.4

179.8

247.2

330.1

0

70

140

210

280

350

1 Lane 2 Lanes 4 Lanes 8 Lanes

C
o

n
su

m
er

M
ar

k
S

co
re

VIRAM-1 CODE

20.0

34.8

53.5

75.1

22.1

39.2

60.9

82.9

0

20

40

60

80

100

1 Lane 2 Lanes 4 Lanes 8 Lanes

T
el

eM
ar

k
S

co
re

VIRAM-1 CODE

Figure 9.3: The composite scores for the consumer and communications benchmarks for VIRAM-1
and CODE as a function of the number of lanes. We assume that both microarchitectures operate
at the clock frequency of 200 MHz. A higher benchmark score reflects higher performance.

performance levels even in the presence of high memory latency (see Chapter 8.4, page 104). On the
other hand, the effectiveness of the delayed pipeline of VIRAM-1 drops quickly when the memory
latency is higher than ten processor cycles.

9.2 The Impact of Communication Network Bandwidth

The communication network in CODE facilitates vector register transfers between the var-
ious cores. Unlike with VIRAM-1, where the centralized vector register file integrates a single-cycle
crossbar switch between the inputs and outputs of all functional units, the communication network
in CODE can use a simpler and easier to implement interconnect structure. This simplification is
possible because the vector cores in CODE need to exchange only a small number of vector operands
for each instruction (see Chapter 6.7, page 76).

Regardless of the implementation details, the parameter that establishes the cost and com-
plexity of the communication network is the bandwidth it supports: the number of vector register
transfers that can occur in parallel and the number of bits per cycle at which each transfer makes
progress. The desired bandwidth determines the number of wires and transistors necessary to im-
plement the network and the complexity of the input and output interfaces in the vector cores.

Figures 9.4 and 9.5 present the performance of the CODE configuration described in Table
9.1 as a function of the bandwidth available on the communication network (BW). We assume that
each inter-core transfer advances at the rate of 64 bits per cycle per lane, in the same way that each
vector instruction uses a 64-bit datapath per cycle per lane during its execution. Therefore, we scale
the available bandwidth at increments of 64 bits per cycle per lane. The notation BW = n specifies
that the communication network has sufficient bandwidth to support n concurrent transfers per
cycle. We also measure performance for the case of infinite network bandwidth, where an unlimited
number of transfers may take place in parallel. For the simulated CODE configuration, the input
and output interfaces of the vector cores can support up to 5 concurrent transfers.

With bandwidth BW = 1, performance is 20% to 50% lower than with the case of infinite
bandwidth. The average number of inter-core transfers for vector registers per instruction varies
between 0.3 and 1.0 for nine out of ten EEMBC benchmarks. Hence, BW = 1 is not sufficient
to support the concurrent execution of up to four vector instructions in the cores available in this
CODE configuration. On the other hand, with bandwidth BW = 2, performance is within 10% of
the case of infinite bandwidth for all benchmarks, regardless of the number of lanes. Even though,
there are still stalls when more than 2 instructions attempt to transfer data on the communication

117

Rgb2cmyk

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p

BW=1

BW=2

BW=3

BW=Inf.

Rgb2yiq

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Filter

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Cjpeg

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Djpeg

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Figure 9.4: The performance of CODE for the consumer benchmarks as a function of the bandwidth
(BW) available in the inter-core communication network. The unit of bandwidth is one 64-bit word
per cycle. Each lane contains a separate copy of the communication network to interconnect the
partitions of vector cores it includes. The last column in each group represents the case of infinite
bandwidth. We present performance as speedup over the CODE configuration with 1 lane and
network bandwidth BW = 1.

118

Autocor

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Convenc

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes
S

p
ee

d
u

p BW=1

BW=2

BW=3

BW=Inf.

Bital

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Fft

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Viterbi

0

2

4

6

8

10

12

1 Lane 2 Lanes 4 Lanes 8 Lanes

S
p

ee
d

u
p BW=1

BW=2

BW=3

BW=Inf.

Figure 9.5: The performance of CODE for the telecommunications benchmarks as a function of
the bandwidth (BW) available in the inter-core communication network. The unit of bandwidth
is one 64-bit word per cycle. Each lane contains a separate copy of the communication network to
interconnect the partitions of vector cores it includes. The last column in each group represents the
case of infinite bandwidth. We present performance as speedup over the CODE configuration with
1 lane and network bandwidth BW = 1.

119

network, the decoupling capability of CODE hides the latency they introduce.

One would expect that Filter, the benchmark that requires more than 1.5 inter-core
transfers per vector instruction, would be able to benefit from additional bandwidth on the commu-
nication network. However, the main bottleneck for executing a large number of concurrent transfers
for Filter is the number of input and output interfaces per vector core. Specifically, we would have
to introduce additional interfaces to the IntFull execution core in the simulated CODE configura-
tion in order to utilize network bandwidth higher than BW = 2. However, it is more efficient in
terms of area and energy consumption to introduce more local vector register in the IntFull core in
order to reduce the number of transfers per instruction for Filter (see Chapter 6.7, page 76).

To support bandwidth BW = 2, we can implement two 64-bit buses or two 64-bit rings that
connect the partitions of the vector cores in each lane. The latency of the communication network
has little impact on performance. CODE can tolerate high latency in the communication network if
sufficient bandwidth is available, in the same way it can tolerate high latency for memory accesses.
For comparison, it is interesting to notice that the partition of the centralized vector register file
in each lane of VIRAM-1 implements a 3 × 8, 64-bit, single-cycle switch for exchange of operands
between its three functional units.

9.3 Scaling CODE with Cores and Lanes

We can scale CODE to exploit additional hardware resources in two orthogonal ways:
more lanes in order to execute more operations per cycle for each vector instruction or more cores
in order to execute more vector instructions in parallel. Additional lanes should be beneficial to
the benchmarks with long vectors, whereas adding cores should accelerate the benchmarks with
independent vector instructions within each basic block. Figures 9.6 and 9.7 present the performance
of CODE for the ten EEMBC benchmarks as we scale the number of vector lanes and vector cores.

The reference point for performance is a CODE configuration with four vector cores (1
IntFull, 1 LDFull, 1 ArithRest, and 1 state core) and one lane, that can support 2 concurrent
transfers on the communication network (BW = 2). From there, we scale the number of cores up to
16 according to the ratio of arithmetic to memory operations for each benchmark (see Table 4.4, page
31). For example, Rgb2yiq executes two arithmetic operations for every memory access, hence we
introduce one load-store core for every two integer cores. We also increase the bandwidth available
on the inter-core communication network by BW = 2 (2 64-bit words per cycle) for every 4 cores.
The memory system for all configuration consists of 16 embedded DRAM banks with 8 sub-banks
per bank and the timing characteristics of the IBM SA27E technology used with VIRAM-1.

Even though we simulate CODE configurations with up to 16 cores, it is important to
understand that it is practically impossible to make efficient use of more than 10 to 12 cores for any
of the benchmarks. The scalar core and the vector issue logic (VIL) of CODE can dispatch only
one instruction per cycle, either vector or scalar. The average ratio of scalar to vector instructions
for the EEMBC benchmarks is 1.5 (see Table 4.3, page 30). Therefore, CODE must issue 24 scalar
instructions with every 16 vector instructions, one for each of the 16 vector core. This takes 40
clock cycles, assuming no other dependencies and stalls. However, even with a single vector lane
and vectors of maximum length, one vector instruction can occupy a vector core for only 32 clock
cycles. Hence, the available issue bandwidth of 1 instruction per cycle is not sufficient to keep 16
vector cores from idling, even under optimistic assumptions. Without additional instruction issue
bandwidth, CODE can exploit up to 10 to 12 vector cores. Its effectiveness with using a large
number of cores depends on several factors such as dependencies between vector instructions and
the frequency of memory stalls.

120

Rgb2cmyk

0

4

8

12

16

20

0 4 8 12 16

Vector Cores

S
p

ee
d

u
p

1 Lane 2 Lanes 4 Lanes 8 Lanes

Rgb2yiq

0

4

8

12

16

20

0 4 8 12 16

Vector Cores

S
p

ee
d

u
p

1 Lane 2 Lanes 4 Lanes 8 Lanes

Filter

0

4

8

12

16

20

0 4 8 12 16

Vector�Cores

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Cjpeg

0

4

8

12

16

20

0 4 8 12 16

Vector�Cores

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Djpeg

0

4

8

12

16

20

0 4 8 12 16

Vector�Cores

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Figure 9.6: The performance of CODE for the consumer benchmarks as a function of the number
of vector cores and lanes. We present performance as speedup over the CODE configuration with
4 vector cores and 1 lane. For Cjpeg and Djpeg, we only measure the vectorized portion of each
benchmark.

121

9.3.1 Consumer Benchmarks

Figure 9.6 describes the scaling behavior for the consumer benchmarks in the EEMBC
suite. Three out of five benchmarks (Rgb2cmyk, Rgb2yiq, and Filter) benefit significantly from
both additional cores and lanes. Cjpeg and Djpeg, on the other hand, exhibit limited performance
improvement with either scaling method.

The performance of Rgb2cmyk and Rgb2yiq scales almost linearly with the number of lanes
because they perform operations on long vectors. They can also exploit up to 8 vectors cores. Scaling
from 4 to 8 cores leads to a proportional performance improvement by a factor or 2, regardless of
the number of lanes. Introducing more than 8 vector cores has no effect on performance. The
bottleneck is the large number of bank conflicts that lead to serialization of memory accesses, as
multiple load-store cores attempt to access data in the same bank, the same row, or even the same
column in a single cycle. Additional banks and sub-banks, or the use of an alternative interleaving
scheme would not alleviate the problem due to the nature of the memory access pattern of the two
benchmarks. However, the ability to merge accesses to the same DRAM row or column, either at
the interface of each DRAM bank or with a hardware structure similar to the rake cache for vector
processors [Asa98], could allow CODE to scale efficiently to approximately 12 vector cores.

Filter behaves similarly to Rgb2cmyk and Rgb2yiq. Increasing the number of cores to 10
leads to performance improvements by a factor of 2 for up to 4 lanes. With 8 lanes, the improvement
rate drops to 1.5 due to the lack of sufficient instruction issue bandwidth. Filter runs into the
problem of frequent bank conflicts faster than Rgb2cmyk and Rgb2yiq. However, each extra core
introduces 8 additional local vector registers and reduces the pressure on the local vector register
files in the other cores. Therefore, Filter experiences a small benefit from additional cores due to
the reduction in the frequency of inter-core register transfers despite the stalls in the memory system
and the low instruction issue bandwidth.

Cjpeg and Djpeg exhibit little performance improvement when scaling the number of vec-
tor cores or lanes. Scaling to either 16 cores or 8 lanes leads to performance improvement of up to a
factor of 2. Both benchmarks operate mostly on short vectors which limits the potential of additional
lanes. The use of additional cores is limited due to two factors. First, there is an increased number
of bank conflicts as multiple load-store cores attempt to access data in the same column in a single
cycle. Second, the instruction sequence for the functions for DCT, which dominate the execution
time in both cases, includes many dependencies which limits the potential for parallel execution
of instructions in multiple cores. The only way to improve the performance of CODE would be
to modify the benchmark code in order to allow outer-loop vectorization of the DCT functions or
unroll the DCT code to operate on two 8 × 8 pixel blocks in parallel. Note that the latter would
also lead to an increase in the static code size.

9.3.2 Telecommunications Benchmarks

Figure 9.7 describes the scaling behavior of CODE for the telecommunication benchmarks
in the EEMBC suite. Bital and Fft exhibit significant performance improvements with both
scaling methods. Autocor and Convenc benefit only from additional lanes. Viterbi cannot exploit
additional hardware resources in either of the two forms.

Autocor executes series of short reductions on vectors of 64 32-bit elements. The instruc-
tion stream for a reduction includes a strictly sequential set of permutation and vector add operations
that cannot execute in parallel in multiple vector cores. Hence, Autocor can only benefit from the
use of multiple lanes. Its performance scales almost linearly with the number of lanes for up to 4
lanes. In order to exploit multiple cores, we would have to modify (unroll) the benchmark code to
execute multiple reductions in parallel.

Convenc behaves similar to Autocor. It executes series of exclusive or reductions which also
prevent the parallel execution of vector instructions in multiple cores without the use of unrolling.

122

Autocor

0

2

4

6

8

10

0 4 8 12 16

Vector�Cores

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Convenc

0

2

4

6

8

10

0 4 8 12 16

Vector�Cores
S

p
ee

d
u

p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Bital

0

2

4

6

8

10

0 4 8 12 16

Vector�Cores

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Fft

0

2

4

6

8

10

0 4 8 12 16

Vector�Cores

S
p

ee
d

u
p

1�Lane 2�Lanes 4�Lanes 8�Lanes

Viterbi

0

2

4

6

8

10

0 4 8 12 16

Vector Cores

S
p

ee
d

u
p

1 Lane 2 Lanes 4 Lanes 8 Lanes

Figure 9.7: The performance of CODE for the telecommunications benchmarks as a function of the
number of vector cores and lanes. We present performance as speedup over the CODE configuration
with 4 vector cores and 1 lane.

123

0

100

200

300

400

500

0 4 8 12 16

Vector Cores

C
o

n
su

m
er

M
ar

k
S

co
re

1 Lane 2 Lanes 4 Lanes 8 Lanes

0

20

40

60

80

100

0 4 8 12 16

Vector Cores

T
el

eM
ar

k
S

co
re

1 Lane 2 Lanes 4 Lanes 8 Lanes

Figure 9.8: The composite score for CODE for the consumer and telecommunications benchmarks
as a function of the number of vector cores and lanes. We assume a clock frequency of 200 MHz for
all configurations. A higher benchmark score reflects higher performance.

It is interesting to note, however, that Convenc already executes as fast as possible for most of the
design points in Figure 9.7. For example, with 4 cores and 4 lanes, CODE can execute the 222
instructions in the benchmark in 240 cycles. It is impossible to achieve dramatic improvements for
this benchmark without resulting to parallel instruction issue for both scalar and vector instructions.

Bital and Fft can exploit additional hardware resources in the form of both vector cores
and vector lanes. With 8 vector cores, performance for Bital and Fft improves by factors of 2.0
and 1.6 respectively for up to 4 lanes. With 8 lanes, the gain from additional cores is slightly lower
due to lack of sufficient instruction issue bandwidth. The two benchmarks cannot make efficient
use of more than 8 vector cores because their code includes a few strictly sequential portions that
execute reductions or butterfly permutations.

Finally, Viterbi is the one benchmark for which CODE cannot exhibit performance im-
provements with additional hardware resources. Viterbi operates on short vectors which prohibits
any gains from the use of multiple vector lanes. In addition, the code for the add-compare-select
steps, which dominates the execution time, includes dependencies that prevent instructions from
executing in parallel on multiple cores. Restructuring the benchmark code cannot help either as the
decoding states in the Viterbi algorithm must be swept in order. Hence, we cannot use outer-loop
vectorization or perform loop unrolling or software pipelining of the vector loops. The only way
to accelerate Viterbi is to execute instructions faster by raising the clock frequency for the vector
processor and reducing the effective latency of memory accesses.

9.3.3 Discussion

Figure 9.8 summarizes the scaling behavior of CODE for the consumer and telecommuni-
cations benchmarks by presenting the composite scores as a function of the number of vector cores
and vector lanes.

The performance of CODE scales better for the consumer benchmarks. Doubling the
number of vector cores from 4 to 8 leads to 82% and 64% performance improvement for CODE
configurations with 1 and 4 lanes respectively. Similarly, each doubling of the number of lanes
increases performance by approximately 55% for configurations with 4 to 8 cores. The benefits from
the two scaling methods are nearly orthogonal. Hence, the configuration with 8 vector cores and 4
lanes performs 4 times better than the base-line configuration with 4 cores and 1 lane.

The telecommunications score, on the other hand, increases faster with the more lanes than
with more cores. In a CODE configuration with 1 core, scaling the number of lanes from 1 to 4
leads to almost 3 times higher performance. In contrast, scaling the number of cores from 4 to 8 in

124

a configuration with 4 lanes leads to only 30% higher performance. Overall, the configuration with
8 vector cores and 4 lanes performs 3.6 times better than the base-line configuration with 4 cores
and 1 lane.

Neither score exhibits a substantial improvement with more than 8 vector cores due to the
limited instruction issue bandwidth and the high frequency of memory stalls. Similarly, increasing
the number of lanes from 4 to 8 leads to less than 30% performance gains in any case.

9.4 Summary

In this chapter, we presented a detailed evaluation of the performance and scalability
potential of the CODE microarchitecture for vector processors. Assuming equal die areas and clock
frequencies, CODE outperforms VIRAM-1 by 26% for the consumer benchmarks and 12% for the
telecommunications benchmarks. The performance advantage is in addition to the design complexity
and energy efficiency benefits of CODE. We also established that the inter-core communication
network in CODE must be able to support 2 concurrent register transfer for every 4 vector cores.

In terms of scalability, we demonstrated that five out of ten EEMBC benchmarks can
efficiently use additional hardware resources in the form of both vector cores and vector lanes. These
benchmarks can use up to 8 vector cores and exhibit nearly linear performance improvements. To
exploit more than 8 cores or observe similar benefits for four of the remaining five benchmarks, we
need to explore memory systems that allow concurrent load accesses to closely packed data and
use code generation techniques that expose more independent instructions (loop unrolling) or create
longer vectors (outer-loop vectorization). There is only one EEMBC benchmark (Viterbi) which
cannot benefit from any of the two scaling methods available in the code microarchitecture, because
it contains limited amounts of data-level and instruction-level level parallelism.

125

Chapter 10

Conclusions

“I hope for nothing,

I fear nothing,

I am free!”

Nikos Kazantzakis

Embedded multimedia systems require high performance for multimedia functions at low
energy consumption and low design complexity. We have shown that this is possible by exploiting the
data-level parallelism in multimedia applications with vector microprocessors. A vector architecture
can express data-level parallelism explicitly, which allows for fast execution of operations on parallel
hardware structures that are simple and modular. The integration of the processor and its main
memory system on a single die provides the high memory bandwidth necessary for a vector processor
in a cost-effective way. In addition, both the vector processor and its memory system scale well with
CMOS technology and can translate improvements in circuits capacity to actual performance gains.

In summary, the main contributions of this dissertation are:

• We introduced the VIRAM vector instruction set architecture (ISA) for embedded multimedia
systems. The vector instructions in the VIRAM ISA can express the data-level parallelism in
multimedia application in an explicit and compact manner.

• We presented the microarchitecture, design, and evaluation of the VIRAM-1 media-processor.
VIRAM-1 integrates a simple, yet highly parallel, vector processor with an embedded DRAM
memory system. It demonstrates that a vector processor can provide high performance for
multimedia tasks, at low energy consumption, and low design complexity.

• We proposed the CODE vector microarchitecture for the VIRAM ISA that combines composite
organization with decoupled execution. The simplified vector register file and the ability to
tolerate high memory latency allow CODE to extend the performance and energy advantages
of VIRAM-1 across a larger design space. It can also support precise exceptions with a minimal
impact on performance.

• We demonstrated that embedded DRAM is a suitable technology for the memory system of
vector media-processors. Embedded DRAM provides the high memory bandwidth required by
a vector processor at low energy consumption and moderate access latency.

Future Work

Even though we have made significant inroads towards efficient processors for embedded
multimedia systems, a lot of work remains to be done. The following are some of the key areas for
future research based on the conclusions of this thesis:

126

• Development of complete multimedia applications: The EEMBC benchmarks used in
this thesis demonstrate the potential of vector processors with multimedia functions, even for
tasks that are considered non-vectorizable, such as Viterbi decoding. However, it is important
to proceed with the development of end-user applications in order to provide complete proof of
concept. Some of the most interesting applications are 3-D graphics rendering, video encoding
and decoding, and speech recognition.

• Languages and compilers for multimedia: Programming languages such as C and C++
provide limited support for expressing fixed-point arithmetic and the explicit parallelism in
the computation, memory accesses, and IO in multimedia functions. The current approaches
to this problems, such as processor-specific pragma statements and language extensions, are
neither portable nor general. It is necessary to explore languages and compilers that overcome
this obstacle and enable the full use of the features available in multimedia architectures like
VIRAM.

• Improved memory systems for large CODE configurations: In Chapter 9, we saw that
the ability of CODE to exploit additional hardware resources is often limited by conflicts in the
memory system. Memory organizations that are able to merge accesses to neighboring data or
to operate concurrently on groups of related data streams can lead to significant performance
and energy improvements for highly parallel microarchitectures such as CODE.

• Architectures for data-level and thread-level parallelism: Apart from data-level par-
allelism, multimedia programs exhibit large amounts of thread-level parallelism. Applications
such as video decoding consist of a number of media functions operating in a pipeline. In other
cases, several media functions operate in parallel in order to process multiple streams of video
or support both visual and audio effects. The next big improvement in multimedia perfor-
mance will occur when we successfully merge architectural and microarchitectural techniques
for exploiting both data-level and thread-level parallelism.

• Specialized hardware engines for complicated tasks: For certain important tasks such
as Huffman encoding, it is difficult to exploit their data-level or instruction-level parallelism
using conventional architectural approaches. Specialized instructions for such tasks lead to
limited performance improvements and are difficult to implement across multiple generations
of microprocessors. An alternative approach to explore is the execution of such difficult tasks
on specialized hardware engines that are closely integrated with a regular microprocessor and
its memory system.

• Modular architectures for yield and reliability improvements: In this thesis, we used
modular implementations of vector processors to provide enhancements in performance, energy
consumption, and design complexity. However, we can also use modularity to improve the yield
of semiconductor chips and their reliability. A modular processor with replicated components
can sustain some number of permanent or transient errors without becoming unusable. It is
interesting to explore the testing and operation techniques that activate or deactivate modular
components on demand in order to increase yield or improve reliability.

127

Bibliography

[ABHS89] M. August, G. Brost, C. Hsiung, and C. Schiffleger. Cray X-MP: The Birth of a Super-
computer. IEEE Computer, 22(1):45–52, January 1989.

[AEJ+02] A. Allan, D. Edenfeld, W. Joyner, M. Rodgers, and Y. Zorian. 2001 Technology Roadmap
for Semiconductors. IEEE Computer, 35(1):42–53, January 2002.

[AF88] D. Alpert and M. Flynn. Performance Trade-offs for Microprocessor Cache Memories.
IEEE Micro, 8(4):44–54, July 1988.

[AHBK00] V. Agarwal, S. Hrisikesh, D. Burger, and S.W. Keckler. Clock Rate vs IPC: The End of
Road for Conventional Microarchitectures. In the Proceedings of the 27th Intl. Sympo-
sium on Computer Architecture, pages 248–259, Vancouver, BC, Canada, June 2000.

[AJ97] K. Asanović and D. Johnson. Torrent Architecture Manual, Revision 2.11. Technical
Report CSD-97-930, Computer Science Division, University of California at Berkeley,
1997.

[Amd81] Amdahl Corporation. Amdahl 470V/8 Computing System Machine Reference Manual,
October 1981.

[Asa98] K. Asanović. Vector Microprocessors. PhD thesis, Computer Science Division, University
of California at Berkeley, 1998.

[AST67] D.W. Anderson, F.K. Sparacio, and R.M. Tomasulo. The IBM System/360 Model 91:
Machine Philosophy and Instruction Handling. IBM Journal of Research and Develop-
ment, 11(1):8–24, January 1967.

[BCS93] R.W. Brodersen, A. Chandrakasan, and S. Sheng. Design Techniques for Portable Sys-
tems. In the Digest of Technical Papers of the Intl. Solid-State Circuits Conference, San
Francisco, CA, February 1993.

[BG97] D. Burger and D. Goodman. Billion-Transistor Architectures - Guest Editors’ Introduc-
tion. IEEE Computer, 30(9):46–48, September 1997.

[Buc62] W. Bucholz, editor. Planning a Computer System. McGraw-Hill, New York, NY, 1962.

[CB94] T. Chen and J.L. Baer. A Performance Study of Software and Hardware Data Prefetching
Schemes. In the Proceedings of the 21st Intl. Symposium on Computer Architecture, pages
223–232, Chicago, IL, April 1994.

[CDJ+97] T.M. Conte, P.K. Dubey, M.D. Jennings, R.B. Lee, A. Peleg, S. Rathnam, M. Schlansker,
P. Song, and A. Wolfe. Challenges to Combining General-purpose and Multimedia
Processors. IEEE Computer, 30(12):33–37, December 1997.

128

[Con81] Control Data Corporation, Arden Hills, MN. CDC Cyber 200 Model 205 System Hard-
ware Reference Manual, 1981.

[Cra93] Cray Research Inc., Chippewa Falls, WI 54729. Cray Y-MP C90 System Programmer
Reference Manual, June 1993.

[Cra00] Cray Research Inc., Chippewa Falls, WI 54729. Cray Standard C and Cray C++ Ref-
erence Manual (004-2179-00), 2000.

[Cri97] Richard Crisp. Direct Rambus Technology: The Main Memory Standard. IEEE Micro,
17(6):18–28, December 1997.

[CSG98] D. Culler, J.P. Singh, and A. Gupta. Parallel Computer Architecture: a Hard-
ware/software Approach. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[CVE99] J. Corbal, M. Valero, and R. Espasa. Exploiting a New Level of DLP in Multimedia
Applications. In the Proceedings of the 32nd Intl. Symposium on Microarchitecture,
Haifa, Israel, November 1999.

[Dal98] W. Dally. Tomorrow’s Computing Engines. Keynote Speech, the 4th Intl. Symposium
on High-Performance Computer Architecture, February 1998.

[DD97] K. Diefendorff and P. Dubey. How Multimedia Workloads Will Change Processor Design.
IEEE Computer, 30(9):43–45, September 1997.

[Dig96] Digital Equipment Corp. Digital Semiconductor Alpha 21064 and 21064A Microproces-
sors: Hardware Reference Manual (EC-Q9ZUC-TE), July 96.

[EB98] J. Eyre and J. Bier. DSP Processors Hit the Mainstream. IEEE Computer, 31(8):51–59,
August 1998.

[ECCH00] D. Engler, B. Chelf, A. Chou, and S Hallem. Checking System Rules using System-
specific, Programmer-written Compiler Extensions. In the Proceedings of the 4th Sym-
posium on Operating Systems Design and Implementation, pages 1–16, San Diego, CA,
October 2000.

[Emb01] Embedded Processors Watch. Microprocessor Report, October 2001.

[Esp97] R. Espasa. Advanced Vector Architectures. PhD thesis, Universitat Politècnica de
Catalunya, February 1997.

[ESSC99] D.G. Elliott, M. Stumm, W.M. Snelgrove, and C. Cojocaru. Computational RAM:
implementing processors in memory. IEEE Design and Test of Computers, 16(1):32–41,
January 1999.

[EV96] R. Espasa and M. Valero. Decoupled Vector Architecture. In the Proceedings of the 2nd
Intl. Symposium on High-Performance Computer Architecture, pages 281–90, San Jose,
CA, February 1996.

[EVS97] R. Espasa, M. Valero, and J.E. Smith. Out-of-order Vector Architectures. In the Proceed-
ings of the 30th Intl. Symposium on Microarchitecture, pages 160–70, Research Triangle
Park, NC, December 1997.

[Far97] K. I. Farkas. Memory-System Design Considerations for Dynamically-Scheduled Micro-
processors. PhD thesis, University of Toronto, 1997.

129

[FBFD00] P. Faraboschi, G. Brown, J.A. Fisher, and G. Desoll. Lx: a Technology Platform for Cus-
tomizable VLIW Embedded Processing. In the Proceedings of the 27th Intl. Symposium
on Computer Architecture, pages 203–13, Vancouver, BC, Canada, June 2000.

[FCJV97] K.I. Farkas, P. Chow, N.P. Jouppi, and Z. Vranesic. The Multicluster Architecture:
Reducing Processor Cycle Time Through Partitioning. In the Proceedings of the 30th Intl.
Symposium on Microarchitecture, pages 327–56, Research Triangle Park, NC, December
1997.

[Fis83] J.A Fisher. VLIW Architectures and the ELI-512. In the Proceedings of the 10th Intl.
Symposium on Computer Architecture, pages 140–150, Stockholm, Sweden, June 1983.

[FJL85] J. Frailong, W Jalby, and J. Lenfant. XOR-schemes: A Flexible Data Organization in
Parallel Memories. In the Proceedings of the Intl. Conference on Parallel Processing,
pages 276–283, August 1985.

[FP91] J.W.C. Fu and J.H. Patel. Data Prefetching in Multiprocessor Vector Cache Memories.
In the Proceedings of the 18th Intl. Symposium on Computer Architecture, pages 54–63,
Toronto, Canada, May 1991.

[FPC+97] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy, P. Patterson, T. An-
derson, and K. Yelick. The Energy Efficiency of IRAM Architectures. In the Proceedings
of the 24th Intl. Symposium on Computer Architecture, pages 327–37, Denver, CO, June
1997.

[FWL99] J. Fritts, W. Wolf, and B. Liu. Understanding Multimedia Applications Characteristics
for Designing Programmable Media Processors. In the Proceedings of the SPIE Photonics
West, San Jose, CA, January 1999.

[G+85] J.R. Goodman et al. PIPE: A VLSI Decoupled Architecture. In the Proceedings of the
12th Intl. Symposium on Computer Architecture, pages 20–17, Boston, MA, June 1985.

[GBS94] S.L. Graham, D.F Bacon, and O.J. Sharp. Compiler Transformations for High Perfor-
mance Computing. ACM Computing Surveys, 26(4):345–420, 1994.

[Gre00] P. Green. A 1GHz IA-32 Microprocessor Implemented on 0.18um Technology with Alu-
minum Interconnect. In the Digest of Technical Papers of the Intl. Solid-State Circuits
Conference, San Francisco, CA, February 2000.

[GRE+01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. MiBench: a
Free, Commercially Representative Embedded Benchmark Suite. In the Proceedings of
the 4th Workshop on Workload Characterization, Austin, TX, December 2001.

[Gro90] G.F. Grohoski. Machine Organization of the IBM RISC System/6000 Processor. IBM
Journal of Research and Development, 34:37–58, January 1990.

[Gro98] G. Grohoski. Challenges and Trends in Processor Design: Reining in Complexity. IEEE
Computer, 31(1):41–42, January 1998.

[GS92] J.D. Gee and A.J. Smith. The Performance Impact of Vector Processor Caches. In
the Proceedings of the 25th Hawaii Intl. Conference on System Sciences, pages 437–449,
January 1992.

[GW76] H. Gurnow and B. Wichmann. A Synthetic Benchmark. IEEE Computer, 19(1), Febru-
ary 1976.

130

[H+90] H. Hikada et al. The Cache DRAM Architecture: A DRAM with an On-Chip Cache
Memory. IEEE Micro, 10(2):14–25, March 1990.

[Hal99a] R. Halfhill. MIPS Plays Hardball with Soft Cores. Microprocessor Report, 13(14):1–2,
October 1999.

[Hal99b] T. Halfhill. Embedded Benchmarks Grow Up. Microprocessor Report, 13(8):1–5, June
1999.

[Hei94] J. Heinrich. MIPS R4000 Microprocessor: User’s Manual. Silicon Graphics, Inc., 1994.

[Hei98] J. Heinrich. MIPS RISC Architecture, 2nd Edition. Silicon Graphics, Inc., 1998.

[Hen00] J. Henning. SPEC CPU2000: Measuring Performance in the New Millennium. IEEE
Computer, 33(7):28–35, July 2000.

[HJBG82] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill. Hardware/Software Tradeoffs for In-
creased Performance. In the Proceedings of the 1st Symposium on Architectural Support
for Programming Languages and Operating Systems, pages 2–11, Palo Alto, CA, April
1982.

[HKK+99] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki,
J. Brockman, W. Athas, Srivastava A., J. Shin, and P. Joonseok. Mapping Irregular
Computations to DIVA, a Data-Intensive Architecture. In the Proceedings of the Super-
computing Conference, Portland, OR, November 1999.

[HL96] Steven W. Hammond and Richard D. Loft. Architecture and Application: The Per-
formance of NEC SX-4 on the NCAR Benchmark Suite. In the Proceedings the Intl.
Conference on Supercomputing, pages 17–22, Pittsburgh, PA, November 1996.

[HMH01] R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of the IEEE, 89(4):490–
504, April 2001.

[HP02] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, San Francisco, CA, third edition, 2002.

[HS93] W. Hsu and J.E. Smith. Performance of Cached DRAM Organizations in Vector Super-
computers . In the Proceedings of the 20th Intl. Symposium on Computer Architecture,
pages 327–336, San Diego, CA, May 1993.

[HT72] R. G. Hintz and D. P. Tate. Control Data STAR-100 Processor Design. In the Proceedings
of COMPCON, pages 1–4, September 1972.

[IEE98] IEEE. The Intl. Solid-State Circuits Conference, Digest of Technical Papers, volume 41,
San Francisco, CA, February 1998.

[IEE99] IEEE. The Intl. Solid-State Circuits Conference, Digest of Technical Papers, volume 42,
San Francisco, CA, February 1999.

[IEE00] IEEE. The Intl. Solid-State Circuits Conference, Digest of Technical Papers, volume 43,
San Francisco, CA, February 2000.

[Int00] Intel Corporation. The IA-32 Intel Architecture Software Developer’s Manual, 2000.

[JM98] B. Jacob and T. Mudge. Virtual Memory in Contemporary Microprocessors. IEEE
Micro, 18(4):60–75, July 1998.

131

[Jon89] Tom Jones. Engineering Design of the Convex C2. IEEE Computer, 22(1):36–44, January
1989.

[Jon92] F. Jones. A New Era of Fast Dynamic RAMs. IEEE Spectrum, 29(10):43–45, October
1992.

[JYK+00] D. Judd, K. Yelick, C. Kozyrakis, D. Martin, and D. Patterson. Exploiting On-Chip
Bandwidth in the VIRAM Compiler. In the Proceedings of the 2nd Workshop on In-
telligent Memory Systems, volume 2107 of Lecture Notes in Computer Science, pages
122–34, Cambridge, MA, 2000. Springer Verlag.

[Kes99] R.E Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36, March 1999.

[KGM+00] C. Kozyrakis, J. Gebis, D Martin, S. Williams, I. Mavroidis, S. Pope, D. Jones, D. Pat-
terson, and K. Yelick. VIRAM: A Media-oriented Vector Processor with Embedded
DRAM. In the Conference Record of the Hot Chips XII Symposium, Palo Alto, CA,
August 2000.

[KHY+99] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas.
FlexRAM: Toward an Advanced Intelligent Memory System. In the Proceedings of the
Intl. Conference on Computer Design, pages 192–201, Austin, TX, October 1999.

[Kil98] E. Killian. Challenges and Trends in Processor Design: Challenges, Not Roadblocks.
IEEE Computer, 31(1):44–45, January 1998.

[KJG+01] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K. Yelick. Hard-
ware/compiler Codevelopment for an Embedded Media Processor. Proceedings of the
IEEE, 89(11):1694–709, Nov 2001.

[KMK01] D. Kim, R. Managuli, and Y. Kim. Data Cache and Direct Memory Access in Program-
ming Mediaprocessors. IEEE Micro, 21(4):33–41, July 2001.

[Koz99] C. Kozyrakis. A Media-enhanced Vector Architecture for Embedded Memory Systems.
Technical Report CSD-99-1059, Computer Science Division, University of California at
Berkeley, 1999.

[KSF+94] L. Kontothanassis, R. A. Sugumar, G.J. Faanes, J.E. Smith, and M.L. Scott. Cache
Performance in Vector Supercomputers. In the Proceedings of the Supercomputing Con-
ference, pages 255–264, Washington, DC, November 1994.

[Law75] D. Lawrie. Access and Alignment of Data in an Array Processor. IEEE Transactions
on Computers, C-24:1145–55, December 1975.

[LBSL97] P. Lapsley, J. Bier, A. Shoham, and E. Lee. DSP Processor Fundamentals: Architectures
and Features. IEEE Press, 1997.

[Lev00] M. Levy. EEMBC 1.0 Scores, Part 1: Observations. Microprocessor Report, pages 1–7,
August 2000.

[Lev01] M. Levy. ManArray Devours DSP Code. Microprocessor Report, pages 1–7, October
2001.

[Lew98] T. Lewis. Information Appliances: Gadget Netopia. IEEE Computer, 31(1):59–68,
January 1998.

132

[LPMS97] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: a Tool for Evaluating
and Synthesizing Multimedia and Communications systems. In the Proceedings of the
30th Intl. Symposium on Microarchitecture, pages 330–5, Research Triangle Park, NC,
December 1997.

[Mar99] D. Martin. Vector Extensions to the MIPS-IV Instruction Set Architecture. Computer
Science Division, University of California at Berkeley, January 1999.

[MIP01] MIPS Technologies, Inc. MIPS64 Architecture for Programmers, Revision 0.95, 2001.

[Moo65] G.E. Moore. Cramming More Components onto Integrated Circuits. Electronics, 38:114–
117, April 1965.

[MS+99] Y. Matsui, K. Sakakibara, et al. 64Mbit Virtual Channel Synchronous DRAM. NEC
Research and Development Journal, 40(3):282–6, July 1999.

[MU84] K. Miura and K. Uchida. FACOM Vector Processor System: VP-100/VP-200. In the Pro-
ceedings of NATO Advanced Research Workshop on High Speed Computing, volume F7.
Springer-Verlag, 1984.

[Muc97] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, San
Francisco, CA, 1997.

[MV96] M. Moudgill and S. Vassiliadis. Precise Interrupts. IEEE Micro, 16(1):58–67, February
1996.

[Org99] International Standards Organization. ISO/IEC 9899: C Programming Language Stan-
dard. ISO, 1999.

[PAC+97] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A Case for Intelligent DRAM: IRAM. IEEE Micro, 17(2):34–
44, April 1997.

[PF00] M. Poess and C Floyd. New TPC Benchmarks for Decision Support and Web Commerce.
the SIGMOD Record, 29(4), December 2000.

[PH98] D. Patterson and J. Hennessy. Computer Organization and Design : the Hard-
ware/Software Interface. Morgan Kaufmann, San Francisco, CA, second edition, 1998.

[Phi98] M. Phillip. A Second Generation SIMD Microprocessor Architecture. In the Conference
Record of the Hot Chips X Symposium, Palo Alto, CA, August 1998.

[PJS96] S. Palacharla, N.P. Jouppi, and J.E. Smith. Quantifying the Complexity of Super-
scalar Processors. Technical Report CS-TR-1996-1328, University of Wisconsin-Madison,
November 1996.

[PK94] S. Paracharla and R.E Kessler. Evaluating Stream Buffers as A Secondary Cache Re-
placement. In the Proceedings of the 21st Intl. Symposium on Computer Architecture,
pages 24–33, Chicago, IL, May 1994.

[PMSB88] A. Padegs, B. Moore, R. Smith, and W. Buchholz. The IBM/370 Vector Architecture:
Design Considerations. IEEE Transactions on Computers, 37(5):509–19, May 1988.

[Pri96] B. Prince. High Performance Memories : New Architecture DRAMs and SRAMs, Evo-
lution and Function. Chichester, 1996.

133

[Prz94] S. Przybylski. New DRAM Technologies: A Comprehensive Analysis of the New Archi-
tectures. MicroDesign Resources, Sebastopol, CA, 1994.

[Rau91] B. Rau. Pseudo-random Interleaved Memories. In the Proceedings of the 18th Intl.
Conference on Computer Architecture, pages 74–83, Toronto, Canada, May 1991.

[RDK+98] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas, P. Mattson, and
J. Owens. A Bandwidth-Efficient Architecture for Media Processing. In the Proceedings
of the 31st Intl. Symposium on Microarchitecture, pages 3–13, Dallas, TX, November
1998.

[RDKM00] S. Rixner, W.J. Dally, B. Khailany, and P. Mattson. Register organization for media pro-
cessing. In the Proceedings of the 6th Intl. Symposium on High-Performance Computer
Architecture, pages 375–86, Touluse, France, January 2000.

[Ric96] D.S. Rice. High-Performance Image Processing Using Special-Purpose CPU Instructions:
The UltraSPARC Visual Instruction Set. Technical Report CSD-96-901, University of
California at Berkeley, 1996.

[Rus78] R. Russel. The Cray-1 Computer System. Communications of the ACM, 21(1):63–72,
January 1978.

[Sez93] A. Seznec. A Case for Two-way Skewed Associative caches. In the Proceedings of the
20th Intl. Symposium on Computer Architecture, pages 169–178, San Diego, CA, May
1993.

[SFS00] J.E. Smith, G. Faanes, and R. Sugumar. Vector Instruction Set Support for Conditional
Operations. In the Proceedings of 27th Intl. Symposium on Computer Architecture, pages
260–9, Vancouver, BC, Canada, June 2000.

[Shi98] T. Shimizu. M32R/D - A Single Chip Microcontroller with A High Capacity 4MB
Internal DRAM. In the Conference Record of Hot Chips X Symposium, Palo Alto, CA,
August 1998.

[Sit92] R. Sites. Alpha Architecture Reference Manual. Digital Press, Oct 1992.

[SK99] I.S. Subramanian and H.L. Kalter. Embedded DRAM Technology: Opportunities and
Challenges. IEEE Spectrum, 36(4):56–64, April 1999.

[SKA01] M. Sung, R. Krashinsky, and K. Asanovic. Multithreading Decoupled Architectures for
Complexity-Effective General Purpose Computing. In the Workshop on Memory Access
Decoupled Architectures, PACT’01, Barcelona, Spain, September 2001.

[SL99] M.G. Stoodley and C.G Lee. Vector Microprocessors for Desktop Computing. In the
Proceedings of the 32nd Intl. Symposium on Microarchitecture, Haifa, Israel, November
1999.

[Smi82] A.J Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, September 1982.

[Smi84] J.E. Smith. Decoupled Access/Execute Computer Architecture. ACM Transactions on
Computer Systems, 2(4):289–308, November 1984.

[Smi89] J.E. Smith. Dynamic Instruction Scheduling and the Astronautics ZS-1. IEEE Com-
puter, 22(7):21–35, July 1989.

134

[SN96] A. Saulsbury and A. Nowatzyk. Missing the memory wall: the case for processor/memory
integration. In the Proceedings of the 23rd Intl. Symposium on Computer Architecture,
pages 90–101, Philadelphia, PA, May 1996.

[Soh90] G. Sohi. Instruction Issue Logic for High-Performance, Interruptable, Multiple Func-
tional Unit, Pipelined Computers. IEEE Transactions on Computers, 39:349–359, March
1990.

[Soh93] G. Sohi. High-bandwidth Interleaved Memories for Vector Processors - A Simulation
Study. IEEE Transactions on Computers, 42(1):34–45, January 1993.

[SP88] J.E. Smith and A.R. Pleszkun. Implementing Precise Interrupts in Pipelined Processors.
IEEE Transactions on Computers, 37(5):562–73, May 1988.

[SRD96] G. Slavenburg, S. Rathnam, and H. Dijkstra. The Trimedia TM-1 PCI VLIW Media
Processor. In the Conference Record of the Hot Chips VIII Symposium, Palo Alto, CA,
August 1996.

[SS95] J.E. Smith and G.S. Sohi. The Microarchitecture of Superscalar Processors. Proceedings
of the IEEE, 83(12):1609–24, December 1995.

[SS01a] N. Slingerland and A.J. Smith. Cache Performance for Multimedia Applications. In the
Proceedings of the 15th Intl. Conference on Supercomputing, pages 204–217, Sorrento,
Italy, June 2001.

[SS01b] N. Slingerland and A.J. Smith. Performance Analysis of Instruction Set Architecture
Extensions for Multimedia. In the 3rd Workshop on Media and Stream Processors, pages
204–217, Austin, TX, December 2001.

[ST92] J.E. Smith and W.R. Taylor. Characterizing Memory Performance in Vector Multi-
processors. In the Proceedings of the Intl. Conference on Supercomputing, pages 35–44,
Minneapolis, MN, July 1992.

[SWP86] J.E. Smith, S. Weiss, and Y. Pang. A Simulation Study of Decoupled Architecture
Computers. IEEE Transactions on Computers, C-35(8):692–701, August 1986.

[TCC+00] M. Tremblay, J. Chan, S. Chaundry, W. Conigliaro, and S. Tse. The MAJC Architecture:
a Synthesis of Parallelism and Scalability. IEEE Micro, pages 12–25, November 2000.

[TD+00] O. Takahashi, S. Dhong, et al. 1-GHz Fully Pipelined 3.7-ns Address Access Time
8k-1024 Embedded Synchronous DRAM Macro. IEEE Journal of Solid State Circuits,
35(11):1673–8, November 2000.

[TFP92] G. Tyson, M. Farrens, and A. Pleszkun. MISC: A Multiple Instruction Stream Com-
puter. In the Proceedings of the 25th Intl. Symposium on Microarchitecture, pages 193–96,
Portland, OR, December 1992.

[Tho70] J.E. Thornton. Design of a Computer - The Control Data 6600. Scott, Foresman and
Co, Glenview, IL, 1970.

[TM95] N. Topham and K. McDougall. Performance of the Decoupled ACRI-1 Architecture: the
Perfect Club. In the Proceedings of Intl. Conference on High-Performance Computing
and Networking, pages 472–80, Milan, Italy, May 1995.

[Tom67] R.M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal of Research and Development, 11(1):25–33, January 1967.

135

[TRMM95] N. Topham, A. Rawsthorne, C. McLean, and M. Mewissen. Compiling and optimizing
for decoupled architectures. In the Proceedings of the Intl. Conference on Supercomput-
ing, pages 1026–87, San Diego, CA, December 1995.

[Tru97] C. Truong. The VelociTi Architecture of the TMS230C6x. In the Conference Record of
Hot Chips IX Symposium, Palo Alto, CA, August 1997.

[Tur98] J. Turley. NEC VR5400 Makes Media Debut. Microprocessor Report, 12(3):1–4, March
1998.

[UIT94] T. Utsumi, M. Ikeda, and M. Takamura. Architecture of the VPP500 Parallel Super-
computer. In the Proceedings of the Intl. Conference on Supercomputing, pages 478–487,
Washington, DC, November 1994.

[Vit67] A.J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm. IEEE Transactions on Information Theory, IT(13):260–269, April
1967.

[WAK+96] J. Wawrzynek, K. Asanović, B. Kingsbury, J. Beck, D. Johnson, and N. Morgan. SPERT-
II: A Vector Microprocessor System. IEEE Computer, 29(3):79–86, March 1996.

[Wal91a] D. Wall. Limits of Instruction-level Parallelism. In the Proceedings of the 4th Intl. Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 176–88, Santa Clara, CA, April 1991.

[Wal91b] G.K. Wallace. The JPEG Still Picture Compression Standard. Communications of the
ACM, 34(4):30–44, April 1991.

[War82] W.P. Ward. Minicomputer Blasts Through 4 Million Instructions per Second. Electron-
ics, pages 155–59, January 1982.

[Wei84] R. Weicker. Dhrystone: A Synthetic Systems Programming Benchmark. Communica-
tions of the ACM, 27(19):2013–1030, October 1984.

[Wil02] S. Williams. The VIRAM Verification Development. Master’s thesis, Computer Science
Division, University of California at Berkeley, 2002.

[WM95] W. Wulf and S. McKee. Hitting the Memory Wall: Implications of the Obvious. Com-
puter Architecture News, 23(1):20–24, March 1995.

[Wor01] Workstation Processors Watch. Microprocessor Report, December 2001.

[Wul92] W.M. Wulf. Evaluation of the WM Computer Architecture. In the Proceedings of the
19th Intl. Symposium on Computer Architecture, pages 382–390, Gold Coast, Australia,
May 1992.

[Yea96] K.C Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40,
April 1996.

[YHO97] T. Yamauchi, L. Hammond, and K. Olukotun. The Hierarchical Multi-bank DRAM: a
High-performance Architecture for Memory Integrated with Processors. In the Proceed-
ings of the 17th Conference on Advanced Research in VLSI, pages 303–19, Ann Arbor,
MI, September 1997.

[YP92] T. Yeh and Y. Patt. A Comprehensive Instruction Fetch Mechanism for a Processor
Supporting Speculative Execution. In the Proceedings of the 25th Intl. Symposium on
Microarchitecture, pages 129–139, Portland, OR, December 1992.

136

[ZMM94] V. Zivojnovic, J. Martinez, and H. Meyr. DSPstone: A DSP-oriented Benchmarking
Methodology. In the Proceedings of the Intl. Conference on Signal Processing Applica-
tions and Technology, Dallas, TX, October 1994.

[ZZZ01] Z. Zang, Z. Zhu, and X. Zhang. Cached DRAM for ILP Processor Memory Access
Latency Reduction. IEEE Micro, 21(4):22–32, July 2001.

