Vector IRAM: ISA and Micro-architecture

Christoforos E. Kozyrakis

Computer Science Division University of California, Berkeley

kozyraki@cs.berkeley.edu
http://iram.cs.berkeley.edu/

Outline

- Project motivation, goals and approach
- Vector IRAM ISA
- VIRAM-1 micro-architecture
- Project status

Project Motivation

- Processor-memory gap is growing exponentially
- Applications shifting from engineering/desktop to multimedia
 - importance of performance of media functions importance of real-time predictable performance
- Embedded/ portable systems gain popularity
 - importance of energy consumption
 - importance system size
- Focus on processors for portable, multimedia systems

The Vector IRAM Approach

Vector processing

- multimedia ready
- predictable, high performance
- simple
- energy savings
- high code density
- well understood programming model

Embedded DRAM

- high memory bandwidth
- low memory latency
- energy savings
- system size benefits

Serial I/O

- Gbit/sec I/O bandwidth
- low pin count
- low power

Outline

• Project motivation and goals

- Vector IRAM ISA
 - Overview of VIRAM ISA extensions
 - Fixed-point and DSP support
 - Conditional and speculative execution
 - Memory model
- VIRAM-1 micro-architecture
- Project status

Vector Execution Model

Vector Architectural State

Overview of V-IRAM ISA Extensions

Fixed-point and DSP support

- GOAL: Competitive DSP performance
- Many DSP features already provided
 - narrow data widths
 - high speed MACs
 - multiple LD/ST per cycle
 - auto increment / decrement
 - zero overhead loops
 - fixed ♀ floating convert

[provided]

- [instruction chaining]
- [multiple memory units]
- [strided memory access]
- [vector instructions]
- [provided]
- bit reverse addressing [use better FFT algorithm]

Fixed-point Multiply-Add Model

Fixed-point instructions

- Vector half-width integer multiply
- Vector fixed-point shift and add
- Vector saturate
- Vector saturating left arithmetic shift

Conditional (Predicated) Execution

- Almost every vector instruction is executed subject to one of two vector masks
- 15 GP flag register provided to buffer masks or operate on them
- 6 flag logical and 13 flag processing instructions (like population count, iota etc)
- 15 flag registers used for sticky exception bits for arithmetic/FP operations and speculative operations

Speculative Execution

- Vectorizing loops with conditional exit conditions
 - Need to speculate past loop exit
 - Need to temporarily suppress exceptions
- Speculation controlled by software
- Solution:
 - A duplicate set of arithmetic exception flag registers
 - A flag register reserved for load faults
 - Speculative loads and speculative arithmetic instructions write these duplicate exception bits

Speculative Execution (cont.)

- Perform loads and enough arithmetic to determine loop exit condition
 - Stores cannot be speculated!
- Generate mask to exclude iterations after loop exit (flag processor instruction)
- VCOMMIT instruction (under mask):
 - ORs speculative flags into real flags
 - Raises memory exceptions

Memory Model

- Relaxed consistency to simplify hardware: no guarantee about ordering of memory operations, even within the same VP
- Register interlocks provided on a per-element basis
- Vector memory barrier used for ordering between scalar unit and vector unit and between VPs
- Indexed memory operations do not specify ordering; separate ordered indexed store instruction

Outline

- Project motivation and goals
- Vector IRAM ISA
- VIRAM-1 micro-architecture
 - Overview of VIRAM-1 micro-architecture
 - Vector pipelines
 - Memory system architecture
- Project status

VIRAM-1 Block Diagram

VIRAM-1 Features

• Scalar unit

• <u>Vector unit</u>

64-bit MIPS core with FP unit 8KB I+D caches, write-through cache invalidation interface

maximum vector length 32
64, 32, 16 bit data-types
2 vector arithmetic units
2 vector flag processing units
4 pipelines per functional unit
2 vector load/store units
64 entry vector TLB, multi-ported

Vector Pipelines

- Multiple pipelines can increase performance OR
- Energy decrease by decreasing clock frequency and power supply

VIRAM-1 Memory System

- 16 to 32MB DRAM
- 16 independently addressed banks
- 8 2Mbit DRAM macros per bank with 256-bit synchronous interface
- Memory crossbar
 - interconnects scalar, vector unit and I/O to memory
 - 8 addresses per cycle
 - 12.8GB/sec maximum data bandwidth per direction
 - implemented using low-swing techniques

VIRAM-1 Floorplan

VIRAM-1 Goals

Technology	0.20 micron, 5 metal layers, embedded DRAM-logic process
Memory	16-32 MB
Die size	250-300 mm ²
Vector pipelin	es 4 64-bit (or 8 32-bit or 16 16-bit)
Clock Frequency 200MHz scalar, 200MHz vector, 100MHz DRAM	
Serial I/O	4 lines @ 1 Gbit/s
Serial I/O	4 lines @ 1 GDII/S
Power	2 W @ 1.5 volt logic
Performance	1.6 GFLOPS ₆₄ – 6.4 GOPS ₁₆
First microprocessor above 0.25B transistors?	

Scaling Down VIRAM-1

- Scaled-down version automatically generated from the the original
- 8 MB in 4 banks
- Vector unit with single pipeline per functional unit => same control
- die: 80 mm²
- transistors: 70M
- power: 0.5 Watts
- performance: 0.4 GFLOPS_{64} 1.6 GOPS_{16}

Project Status

- ISA extensions frozen
- Micro-architecture still under development but design has started
- Developing simulation infrastructure
- Designed 2 test-chips for circuit evaluation
 - serial I/O @ 1Gbit/s
 - embedded DRAM and on-chip crossbar
- Expected VIRAM-1 tape-out: early 2000

Acknowledgments

- Thanks for advice/support: DARPA, California MICRO, ARM, Hitachi, IBM, Intel, LG Semicon, Microsoft, Mitsubishi, Neomagic, Samsung, SGI/Cray, Sun Microsystems
- The IRAM/ISTORE cast: D. Patterson, K. Asanovic, A. Brown, J. Gebis, B. Gribstad, R. Fromm, J. Golbus, K. Keeton, C. Kozyrakis, J. Kubiatowicz, D. Martin, S. Perissakis, R. Thomas, N. Treuhaft and K. Yelick