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IRAM Vision Statement

Microprocessor & DRAM 
on a single chip:
– on-chip memory latency 

5-10X, bandwidth 50-100X

– improve energy efficiency 
2X-4X (no off-chip bus)

– serial I/O 5-10X v. buses

– smaller board area/volume
– adjustable memory size/width
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Outline
Today’s Situation: Microprocessor

Today’s Situation: DRAM
IRAM Opportunities

Applications of IRAM

Directions for New Architectures
Berkeley IRAM Project Plans

Related Work and Why Now?
IRAM Challenges & Industrial Impact
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Processor-DRAM Gap (latency)

µProc
60%/yr.

DRAM
7%/yr.
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Processor-Memory 
Performance Gap “Tax”

    Processor % Area %Transistors 

(≈cost) (≈power)
Alpha 21164 37% 77%

StrongArm SA110 61% 94%
Pentium Pro 64% 88%
– 2 dies per package: Proc/I$/D$ + L2$

Caches have no inherent value, 
only try to close performance gap
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Today’s Situation: Microprocessor
 MIPS MPUs  R5000 R10000 10k/5k

Clock Rate 200 MHz  195 MHz 1.0x
On-Chip Caches 32K/32K  32K/32K 1.0x

Instructions/Cycle 1(+ FP) 4 4.0x
Pipe stages 5 5-7 1.2x

Model In-order Out-of-order ---
Die Size (mm2) 84  298 3.5x
– without cache, TLB 32 205  6.3x

Development (man yr.) 60 300 5.0x

SPECint_base95 5.7 8.8 1.6x
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Today’s Situation: Microprocessor 
Rely on caches to bridge gap

Microprocessor-DRAM performance gap
– time of a full cache miss in instructions executed

1st  Alpha (7000): 340 ns/5.0 ns =  68 clks x 2 or 136
2nd Alpha (8400): 266 ns/3.3 ns =  80 clks x 4 or 320

3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 or 648
– 1/2X latency x 3X clock rate x 3X Instr/clock ⇒ ≈5X

Power limits performance (battery, cooling)

Shrinking number of desktop MPUs?
PowerPC

PA-RISC
MIPS Alpha IA-64SPARC
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Today’s Situation: DRAM

DRAM Revenue per Quarter
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Today’s Situation: DRAM
Commodity, second source industry 
 ⇒ high volume, low profit, conservative
– Little organization innovation (vs. processors) 

in 20 years: page mode, EDO, Synch DRAM

DRAM industry at a crossroads:
– Fewer DRAMs per computer over time

» Growth bits/chip DRAM : 50%-60%/yr

» Nathan Myrvold M/S: mature software growth 
(33%/yr for NT) ≈ growth MB/$ of DRAM (25%-30%/yr)

– Starting to question buying larger DRAMs?
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Fewer DRAMs/System over Time
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‘86  ‘89  ‘92 ‘96 ‘99 ‘02 
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Multiple Motivations for IRAM

Some apps: energy, board area, memory size

Gap means performance challenge is memory
DRAM companies at crossroads? 
– Dramatic price drop since January 1996
– Dwindling interest in future DRAM?

» Too much memory per chip?

Alternatives to IRAM: fix capacity but shrink 
DRAM die, packaging breakthrough, more out-of-
order CPU,...
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Potential IRAM Latency: 5 - 10X

No parallel DRAMs, memory controller, bus 
to turn around, SIMM module, pins…

New focus: Latency oriented DRAM?
– Dominant delay =  RC of the word lines  

– keep wire length short & block sizes small?

10-30 ns for 64b-256b IRAM “RAS/CAS”?

AlphaSta. 600: 180 ns=128b, 270 ns= 512b 
Next generation (21264): 180 ns for 512b?
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Potential IRAM Bandwidth: 100X

1024 1Mbit modules(1Gb), each 256b wide
– 20% @ 20 ns RAS/CAS = 320 GBytes/sec 

If cross bar switch delivers 1/3 to 2/3 of BW 
of 20% of modules
 ⇒ 100 - 200 GBytes/sec 
FYI: AlphaServer 8400 = 1.2 GBytes/sec 
– 75 MHz, 256-bit memory bus, 4 banks
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Potential Energy Efficiency: 2X-4X

Case study of StrongARM memory hierarchy 
vs. IRAM memory hierarchy
– cell size advantages ⇒ much larger cache

 ⇒ fewer off-chip references 
 ⇒ up to 2X-4X energy efficiency for memory

– less energy per bit access for DRAM

Memory cell area ratio/process: P6, α ‘164,SArm
cache/logic : SRAM/SRAM  : DRAM/DRAM

20-50 : 8-11 : 1
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Potential Innovation in Standard 
DRAM Interfaces

Optimizations when chip is a system vs. chip is a 
memory component
– Improve yield with variable refresh rate?
– “Map out” bad memory modules to improve yield?
– Reduce test cases/testing time during manufacturing?

– Lower power via on-demand memory module 
activation?

IRAM advantages even greater if innovate inside 
DRAM memory interface?
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Commercial IRAM highway is 
governed by memory per IRAM?

Graphics
 Acc.

Super PDA/Phone
Embedded Proc./Video Games

Network Computer
Laptop

8 MB

2 MB

32 MB
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Near-term IRAM Applications

“Intelligent” Set-top
– 2.6M Nintendo 64 (≈ $150) sold in 1st year
– 4-chip Nintendo ⇒ 1-chip: 3D graphics, sound, fun!

“Intelligent” Personal Digital Assistant
– 1.0M PalmPilots (≈ $300) sold in 1st year: 

– Speech input vs. Learn new Alphabet (α = K,   = T)
– Camera/Vision for PDA to see surroundings
– Speech output to converse

– Play checkers with PDA
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Long-term App: Decision Support?
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ProcProcProc

  2.6 
GB/s

  6.0 
GB/s

 Sun 10000 (Oracle 8):
– TPC-D (1TB) leader
– SMP 64 CPUs, 

64GB dram, 603 disks

Disks,encl. $2,348k
DRAM $2,328k
Boards,encl. $983k
CPUs $912k
Cables,I/O $139k
Misc $65k
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IRAM Application Inspiration: 
Database Demand vs. 

Processor/DRAM speed

1

10

100

1996 1997 1998 1999 2000

µProc speed
2X /  18 months

Processor-Memory
Performance Gap:

Database demand:
2X / 9 months

DRAM speed
2X /120 months

Database-Proc.
Performance Gap:“Greg’s Law”

“Moore’s Law”
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“Intelligent Disk”:
Scalable Decision Support?

  6.0 
GB/s

1 IRAM/disk + shared 
nothing database

– 603 CPUs, 
14GB dram, 603 disks

Disks (market) $840k
IRAM (@$150) $90k
Disk encl., racks $150k
Switches/cables $150k

Misc  $60k
Subtotal $1,300k
Markup 2X? ≈ $2,600k
≈1/3 price, 2X-5X perf

…

cross bar

… …

…

IRAM IRAM

IRAMIRAM

…
… …

…

IRAM IRAM

IRAMIRAM

  75.0 
GB/s

…

…cross bar

cross bar

cross bar

cross bar
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“Vanilla” Approach to IRAM

Estimate performance IRAM version of Alpha 
(same caches, benchmarks, standard DRAM)
– Used optimistic and pessimistic factors for logic 

(1.3-2.0 slower), SRAM (1.1-1.3 slower), 
DRAM speed (5X-10X faster) for standard DRAM

– SPEC92 benchmark ⇒ 1.2 to 1.8 times slower

– Database ⇒ 1.1 times slower to 1.1 times faster
– Sparse matrix ⇒ 1.2 to 1.8 times faster

Conventional architecture/benchmarks/DRAM not 
exciting performance; energy,board area only
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A More Revolutionary Approach: 
DRAM

Faster logic in DRAM process
– DRAM vendors offer faster transistors + 

same number metal layers as good logic process?
@ ≈ 20% higher cost per wafer? 

– As die cost ≈ f(die area4), 4% die shrink ⇒ equal cost



23

A More Revolutionary Approach: 
New Architecture Directions

“...wires are not keeping pace with scaling of 
other features. … In fact, for CMOS processes 
below 0.25 micron ... an unacceptably small 
percentage of the die will be reachable during 
a single clock cycle.”

“Architectures that require long-distance, rapid 
interaction will not scale well ...”
– “Will Physical Scalability Sabotage Performance 

Gains?” Matzke, IEEE Computer (9/97)
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New Architecture Directions
“…media processing will become the dominant 
force in computer arch. & microprocessor design.”
“... new media-rich applications... involve 
significant real-time processing of continuous 
media streams, and make heavy use of vectors of 
packed 8-, 16-, and 32-bit integer and Fl. Pt.”

Needs include high memory BW, high network 
BW, continuous media data types, real-time 
response, fine grain parallelism
– “How Multimedia Workloads Will Change Processor 

Design”, Diefendorff & Dubey, IEEE Computer (9/97)
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Which is Faster? 
 Statistical v. Real time Performance
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Real time ⇒ Worst ⇒ A



26

Potential IRAM Architecture
“New” model: VSIW=Very Short Instruction Word!
– Compact: Describe N operations with 1 short instruct.
– Predictable (real-time) perf. vs. statistical perf. (cache)

– Multimedia ready: choose N*64b,2N*32b,4N*16b,8N*8b
– Easy to get high performance; N operations:

» are independent (⇒ short signal distance)
» use same functional unit
» access disjoint registers
» access registers in same order as previous instructions
» access contiguous memory words or known pattern
» hides memory latency (and any other latency)

– Compiler technology already developed, for sale!
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Revive Vector (= VSIW) Architecture!
Cost: ≈ $1M each?
Low latency, high 
BW memory system?
Code density?
Compilers?
Vector Performance?
Power/Energy?
Scalar performance?

Real-time?

Limited to scientific 
applications?

Single-chip CMOS MPU/IRAM
IRAM = low latency, high 
bandwidth memory
Much smaller than VLIW/EPIC
For sale, mature (>20 years)
Easy scale speed with technology
Parallel to save energy, keep perf
Include modern, modest CPU 
 ⇒ OK scalar (MIPS 5K v. 10k)
No caches, no speculation
⇒ repeatable speed as vary input 
Multimedia apps vectorizable too: 
N*64b,2N*32b,4N*16b,8N*8b
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Mediaprocesing Functions (Dubey)
Kernel Vector length
Matrix transpose/multiply # vertices at once

DCT (video, comm.) image width

FFT (audio) 256-1024
Motion estimation (video) image width, i.w./16

Gamma correction (video) image width
Haar transform (media mining) image width

Median filter (image process.) image width
Separable convolution (““) image width

(from http://www.research.ibm.com/people/p/pradeep/tutor.html)
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Software Technology Trends 
Affecting V-IRAM?

V-IRAM: any CPU + vector coprocessor/memory
– scalar/vector interactions are limited, simple

– Example V-IRAM architecture based on ARM 9

Vectorizing compilers built for 25 years
– can buy one for new machine from The Portland Group

Microsoft “Win CE”/ Java OS for non-x86 platforms 

Library solutions (e.g., MMX); retarget packages 
Software distribution model is evolving?
– New Model: Java byte codes over network? 

+ Just-In-Time compiler to tailor program to machine?
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V-IRAM-2: 0.13 µm, Fast Logic, 1GHz 
16 GFLOPS(64b)/128 GOPS(8b)/96MB

Memory Crossbar Switch
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CPU
+$

V-IRAM-2 Floorplan

Memory Crossbar Switch

Memory Crossbar Switch

I/O8 Vector Units (+ 1 spare)

Memory (384 Mbits / 48 MBytes)

0.13 µm, 
1 Gbit DRAM

1B Xtors:
90% Memory, 
Xbar, Vector 
⇒ regular 
design
Spare VU & 
Memory ⇒ 
90% die 
repairable
Short signal 
distance ⇒ 
speed scales 
<0.1 µm

Memory (384 Mbits / 48 MBytes)
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CPU
+$

Alternative Goal: Low Cost V-IRAM-2

Xbar

I/O2 VU

Memory 
(96 Mbits

 / 12 MBytes)

Scalable design, 
0.13 generation

Reduce die size by 
4X by shrinking 
vector units (25%),
caches (25%), 
memory (25%)
≈50 mm2, 16-24MB 

High Perf. version:
2.5 w, 1000 MHz,
4 - 32 GOPS

Low Power version:
0.5 w, 500 MHz, 
2 - 16 GOPS

Xbar

Memory 
(96 Mbits

 / 12 MBytes)
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V-IRAM-1 Specs/Goals
Technology 0.18-0.20 micron, 5-6 metal layers, fast xtor
Die size ≈200 mm2

Memory 16-24 MB
Vector lanes 4 64-bit (or 8 32-bit or 16 16-bit or 32 8-bit)
Target Low Power High Performance
Serial I/O 4 lines @ 1 Gbit/s 8 lines @ 2 Gbit/s

Power      ≈2 w @ 1-1.5 volt logic ≈10 w @ 1.5-2 volt logic
Clockunivers.  200scalar/100vector MHz 250sc/250vector MHz
Perfuniversity  0.8 GFLOPS64-6 GFLOPS8     2 GFLOPS64-16 GFLOPS8 
Clockindustry 400scalar/200vector MHz 500s/500v MHz
Perfindustry   1.6 GFLOPS64-12 GFLOPS8  4 GFLOPS64-32 GFLOPS8 



34

V-IRAM-1 Tentative Plan
Phase I: Feasibility stage (≈H1’98)
– Test chip, CAD agreement, architecture defined

Phase 2: Design Stage (≈H2’98)
– Simulated design

Phase 3: Layout & Verification (≈H2’99)
– Tape-out

Phase 4: Fabrication,Testing, and 
Demonstration (≈H1’00)
– Functional integrated circuit

First microprocessor ≥ 100M transitors!
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SIMD on chip (DRAM)
Uniprocessor (SRAM)
MIMD on chip (DRAM)
Uniprocessor (DRAM)
MIMD component (SRAM )

10 100 1000 10000
0.1

1

10

100

Mbits 
of 

Memory

Computational RAM
PIP-RAMMitsubishi M32R/D

Execube

Pentium Pro

Alpha 21164

Transputer T9

1000
IRAMUNI? IRAMMPP?

PPRAM

Bits of Arithmetic Unit

Terasys

IRAM 
not a new idea

Stone, ‘70 “Logic-in memory”
Barron, ‘78 “Transputer”
Dally, ‘90 “J-machine”
Patterson, ‘90 panel session
Kogge, ‘94 “Execube”
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Why IRAM now? 
Lower risk than before

Faster Logic + DRAM available now/soon?
DRAM manufacturers now willing to listen
– Before not interested, so early IRAM = SRAM

Past efforts memory limited ⇒ multiple chips 
 ⇒ 1st solve the unsolved (parallel processing)
– Gigabit DRAM ⇒ ≈100 MB; OK for many apps?

Systems headed to 2 chips: CPU + memory
Embedded apps leverage energy efficiency, 
adjustable mem. capacity, smaller board area 
 ⇒ OK market v. desktop (55M 32b RISC ‘96)
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IRAM Challenges
Chip
– Good performance and reasonable power?
– Speed, area, power, yield, cost in DRAM process? 

– Testing time of IRAM vs DRAM vs microprocessor?
– BW/Latency oriented DRAM tradeoffs? 

– Reconfigurable logic to make IRAM more generic?

Architecture
– How to turn high memory bandwidth into 

performance for real applications?
– Extensible IRAM: Large program/data solution? 

(e.g., external DRAM, clusters, CC-NUMA, ...)
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IRAM potential in mem/IO BW, energy, board area; 
challenges in power/performance, testing, yield
10X-100X improvements based on technology 
shipping for 20 years (not JJ, photons, MEMS, ...)

Apps/metrics of future to design computer of future
V-IRAM can show IRAM’s potential 
– multimedia, energy, size, scaling, code size, compilers

Revolution in computer implementation v. Instr Set
– Potential Impact #1: turn server industry inside-out?

Potential #2: shift semiconductor balance of power?
   Who ships the most memory? Most microprocessors? 

IRAM Conclusion
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Interested in Participating?
Looking for ideas of IRAM enabled apps

Contact us if you’re interested:
http://iram.cs.berkeley.edu/
email: patterson@cs.berkeley.edu

Thanks for advice/support: DARPA, ARM, Intel, 
LG Semiconductor, Neomagic, Samsung, 
SGI/Cray, Sun Microsystems
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Backup Slides

(The following slides are used to help 
answer questions)
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New Architecture Directions

More innovative than “Let’s build a larger cache!”
IRAM architecture with simple programming to 
deliver cost/performance for many applications
– Evolve software while changing underlying hardware

– Simple ⇒ sequential (not parallel) program; 
large memory; uniform memory access time

Binary Compatible
(cache, superscalar)

Recompile
(RISC,VLIW)

Rewrite Program
(SIMD, MIMD)

Benefit
threshold 
before use:

1.1–1.2? 2–4? 10–20?



42

Grading Architecture Options
Superscalar++ µSMP VIRAM

Fine grain parallelism A A A

Coarse grain (n chips) A B A
Compiler maturity B B A

MIPS/xtor (cost) C B A
Technology scaling C A A

Real time performance C B A
Energy  efficiency D A A

Programmer model D B A
“GPA” C B A
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VLIW/Out-of-Order vs. 
Modest Scalar+Vector

0
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Applications sorted by Instruction Level Parallelism
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VLIW/OOO

Modest Scalar

Vector

Very Sequential Very Parallel

(Where are important 
applications on this axis?)

(Where are crossover 
points on these curves?)
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How to get Low Power, 
High Clock rate IRAM?

Digital Strong ARM 110 (1996): 2.1M Xtors
– 160 MHz @ 1.5 v = 184 “MIPS” < 0.5 W
– 215 MHz @ 2.0 v = 245 “MIPS” < 1.0 W

Start with Alpha 21064 @ 3.5v, 26 W
– Vdd reduction ⇒ 5.3X ⇒ 4.9 W

– Reduce functions ⇒ 3.0X ⇒ 1.6 W
– Scale process ⇒ 2.0X ⇒ 0.8 W

– Clock load ⇒ 1.3X ⇒ 0.6 W
– Clock rate ⇒ 1.2X ⇒ 0.5 W

6/97: 233 MHz, 268 MIPS, 0.36W typ., $49
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Characterizing IRAM 
Cost/Performance

Cost ≈ embedded processor + memory

Small memory on-chip (25 - 100 MB)
High vector performance (2 -16 GFLOPS)

High multimedia performance (4 - 64 GOPS)
Low latency main memory (15 - 30ns)

High BW main memory (50 - 200 GB/sec)
High BW I/O (0.5 - 2 GB/sec via N serial lines)
– Integrated CPU/cache/memory with high memory 

BW ideal for fast serial I/O
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Goal for Vector IRAM Generations
V-IRAM-1 (≈2000)

256 Mbit generation (0.20)
Die size = 256 Mb DRAM die

1.5 - 2.0 v logic, 2-10 watts
100 - 500 MHz
4 64-bit pipes/lanes

1-4 GFLOPS(64b)/6-32G (8b)
30 - 50 GB/sec Mem. BW

24 MB capacity + DRAM bus
Several fast serial I/O

V-IRAM-2 (≈2003)

1 Gbit generation (0.13)
Die size = 1 Gb DRAM die

1.0 - 1.5 v logic, 2-10 watts
200 - 1000 MHz
8 64-bit pipes/lanes

2-16 GFLOPS/24-128G
100 - 200 GB/sec Mem. BW

96 MB cap. + DRAM bus
Many fast serial I/O
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“Architectural Issues for the 1990s” 
(From Microprocessor Forum 10-10-90):

 Given: 
 Superscalar, superpipelined RISCs and
 Amdahl's Law will not be repealed
 => High performance in 1990s is not limited by CPU
 
Predictions for 1990s:
     "Either/Or" CPU/Memory will disappear (“hit under miss”)

      Multipronged attack on memory bottleneck
cache conscious compilers
lockup free caches / prefetching

      All programs will become I/O bound; design accordingly

       Most important CPU of 1990s is in DRAM: "IRAM"
 (Intelligent RAM: 64Mb + 0.3M transistor CPU = 100.5%)
           => CPUs are genuinely free with IRAM
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Example IRAM Architecture Options

(Massively) Parallel Processors (MPP) in IRAM
– Hardware: best potential performance / transistor,

 but less memory per processor

– Software: few successes in 30 years: databases, 
file servers, dense matrix computations, ... 
delivered MPP performance often disappoints

– Successes are in servers, which need more memory 
than found in IRAM

– How get 10X-20X benefit with 4 processors?
– Will potential speedup justify rewriting programs?
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How difficult to build and sell 
1B transistor chip?

Microprocessor only: ≈600 people, new 
CAD tools, what to build? (≈100% cache?)
DRAM only: What is proper architecture/
interface? 1 Gbit with 16b RAMBUS 
interface? 1 Gbit with new package, new 
512b interface?

IRAM: highly regular design, target is not 
hard, can be done by a dozen Berkeley 
grad students?
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IRAM Cost

Fallacy: IRAM must cost ≥ Intel chip in PC 
(≈ $250 to $750)
– Lower cost package for IRAM:

» IRAM: 1 chip with ≈ 30-40 pins, 1-5 watts
» Intel Pentium II module (242 pins): 1 chip with ≈ 400 pins, 

+ 512KB cache, graphics/memory controller = 43 watts 

– Cost of whole IRAM applications < $300

– Mitsubishi M32R with 2MB memory < 2-4X memory

Smaller footprint, lower power ⇒ 
IRAM cluster cost ≈ “DRAM cluster” (SIMM) 
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Testing in DRAM

Importance of testing over time
– Testing time affects time to qualification of new 

DRAM, time to First Customer Ship
– Goal is to get 10% of market by being one of the 

first companies to FCS with good yield
– Testing 10% to 15% of cost of early DRAM

Built In Self Test of memory: 
 BIST v. External tester?
 Vector Processor 10X v. Scalar Processor?
System v. component may reduce testing cost
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DRAM v. 
Desktop Microprocessors

Standards pinout, package, binary compatibility, 
refresh rate, IEEE 754, I/O bus
 capacity, ...

Sources Multiple Single
Figures 1) capacity, 1a) $/bit 1) SPEC speed

of Merit 2) BW, 3) latency 2) cost

Improve 1) 60%, 1a) 25%, 1) 60%, 
Rate/year 2) 20%, 3) 7% 2) little change
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DRAM Design Goals

Reduce cell size 2.5, increase die size 1.5

Sell 10% of a single DRAM generation
– 6.25 billion DRAMs sold in 1996

3 phases: engineering samples, first 
customer ship(FCS), mass production
– Fastest to FCS, mass production wins share

Die size, testing time, yield => profit
– Yield >> 60% 

(redundant rows/columns to repair flaws)
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ISIMM/IDISK Example: Sort
Berkeley NOW cluster has world record sort: 
8.6GB disk-to-disk using 95 processors in 1 minute
Balanced system ratios for processor:memory:I/O 
– Processor: ≈ N MIPS
– Large memory: N Mbit/s disk I/O & 2N Mb/s Network

– Small memory: 2N Mbit/s disk I/O & 2N Mb/s Network

Serial I/O at 2-4 GHz today (v. 0.1 GHz bus)

IRAM: ≈ 2-4 GIPS + 2 2-4Gb/s I/O + 2 2-4Gb/s Net
ISIMM: 16 IRAMs+net switch+ FC-AL links (+disks)

1 IRAM sorts 9 GB, Smart SIMM sorts 100 GB
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Energy to Access Memory 
by Level of Memory Hierarchy

For 1 access, measured in nJoules

                                 Conventional         IRAM
on-chip L1$(SRAM) 0.5 0.5

on-chip L2$(SRAM v. DRAM) 2.4 1.6
L1 to Memory (off- v. on-chip) 98.5 4.6

L2 to Memory (off-chip) 316.0          (n.a.)
» Based on Digital StrongARM, 0.35 µm technology 
» See "The Energy Efficiency of IRAM Architectures," 

24th Int’l Symp. on Computer Architecture, June 1997
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21st Century Benchmarks?

Potential Applications (new model highlighted) 
– Text: spelling checker (ispell), Java compilers (Javac, 

Espresso), content-based searching (Digital Library)

– Image: text interpreter(Ghostscript), mpeg-encode, ray 
tracer (povray), Synthetic Aperture Radar (2D FFT)

– Multimedia: Speech (Noway), Handwriting (HSFSYS)

– Simulations: Digital circuit (DigSim),Mandelbrot (MAJE)

Others? suggestions requested!
– Encryption (pgp), Games?, Object Relational Database?, 

Word Proc?, Reality Simulation/Holodeck?,
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Justification#2: Berkeley has done one 
“lap”; ready for new architecture?

RISC: Instruction set /Processor design + 
Compilers (1980-84)
SOAR/SPUR: Obj. Oriented SW, Caches, & Shared 
Memory Multiprocessors + OS kernel (1983-89)

RAID: Disk I/O + File systems (1988-93)
NOW: Networks + Clusters + Protocols (1993-98)

IRAM: Instruction set, Processor design, Memory 
Hierarchy, I/O, Network, and Compilers/OS 
(1996-200?)
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If IRAM doesn’t happen, then someday:
– $10B fab for 16B Xtor MPU (too many gates per die)??

– $12B fab for 16 Gbit DRAM (too many bits per die)??

This is not rocket science. In 1997:
– 20-50X improvement in memory density; 

 ⇒ more memory per die or smaller die

– 10X -100X improvement in memory performance
– Regularity simplifies design/CAD/validate: 1B Xtors “easy”

– Logic same speed
– < 20% higher cost / wafer (but redundancy improves yield)

IRAM success requires MPU expertise + DRAM fab

Why a company should try IRAM



59

Words to Remember

“...a strategic inflection point is a time in the life of 
a business when its fundamentals are about to 
change. ... Let's not mince words: A strategic 
inflection point can be deadly when unattended to. 
Companies that begin a decline as a result of its 
changes rarely recover their previous greatness.”
– Only the Paranoid Survive, Andrew S. Grove, 1996


